正解:搜索

解题报告:

传送门$QwQ$

首先发现长度为$len$的子集的值域为$[0,v\cdot len+len]$,数量为$2^{len}$.所以当$2^{len}\geq v\cdot len+len$时利用鸽巢原理发现显然是有解的.解得$len\geq 14$.

所以就只要解决$len<14$的范围内的问题了.

把转化后的题目拿出来,发现,噢这不是个折半搜索板子嘛.

复杂度也很对,$O(3^{\frac{len}{2}})$.

于是就做完了$QwQ$

嗷关于修改操作,只要每次记录下每个位置乘了多少次,然后在询问的时候如果$len<14$就$O(len)$地修改下,否则就不用管鸭$QwQ$

$over$

然后写完代码过来补点儿细节

好像也没啥,就这个修改操作我本来以为很$easy$后来发现是我想锅了$QAQ$

就修改会修改为$d^{3^k}$.所以这里有两种方法,一种是倍增一种是欧拉.因为欧拉比较好写所以我写的欧拉.就直接用扩展欧拉定理就完事$QwQ$.

但是说一个很迷惑的点,,,就我之前拿我的和倍增的方法拍了下,,,发现那个修改后的值不一样,,,但是都$AC$了,,,我也不知道咋回事$kk$

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define ri register int
#define rc register char
#define rb register bool
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) const int N=100000+10;
int n,m,mod,a[N],tr[N],ph,lim;
bool flg;
unordered_map<int,int>mp; il int read()
{
rc ch=gc;ri x=0;rb y=1;
while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
if(ch=='-')ch=gc,y=0;
while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
return y?x:-x;
}
il int phi(ri x)
{
ri ret=x;
for(ri i=2;i*i<=x;i++)if(!(x%i)){ret=ret/i*(i-1);while(!(x%i))x/=i;}
if(x>1)ret=ret/x*(x-1);;return ret;
}
il int power(ri x,ri y){ri ret=1;while(y){if(y&1)ret=1ll*ret*x%mod;x=1ll*x*x%mod;y>>=1;}return ret;}
il void ad(ri nw,ri dat){while(nw<=n)tr[nw]+=dat,nw+=lowbit(nw);}
il int query(ri nw){ri ret=0;while(nw)ret+=tr[nw],nw-=lowbit(nw);return ret;}
void dfs1(ri nw,ri lim,ri sum,ri zt)
{
if(nw>lim)
{
if(!zt)return;
if(zt==1){if(mp[sum]==2 || mp[sum]==4)mp[sum]=4;else mp[sum]|=zt;return;}
if(zt==2){if(mp[sum]==1 || mp[sum]==4)mp[sum]=4;else mp[sum]|=zt;return;}
mp[sum]=3;return;
}
dfs1(nw+1,lim,sum,zt);dfs1(nw+1,lim,sum+a[nw]+1,zt|1);dfs1(nw+1,lim,sum-a[nw]-1,zt|2);
}
void dfs2(ri nw,ri lim,ri sum,ri zt)
{
if(nw>lim)
{
if(zt==1 && mp[-sum]>1){flg=1;return;}
if(zt==2 && (mp[-sum]>2 || mp[-sum]==1)){flg=1;return;}
if(mp[-sum]==3 || (zt==3 && (mp[-sum] || !sum))){flg=1;return;}
return;
}
dfs2(nw+1,lim,sum,zt);if(flg)return;
dfs2(nw+1,lim,sum+a[nw]+1,zt|1);if(flg)return;
dfs2(nw+1,lim,sum-a[nw]-1,zt|2);
}
il int lg(ri x){ri ret=0;while(x>=3)++ret,x/=3;return ret;}
il int cal(ri d){ri tmp=0;if(d>lim)tmp=ph;swap(ph,mod);d=power(3,d);swap(ph,mod);return d+tmp;} int main()
{
n=read();m=read();mod=read();ph=phi(mod);lim=lg(ph);rp(i,1,n)a[i]=read();
while(m--)
{
ri opt=read(),l=read(),r=read();
if(opt==2)ad(l,1),ad(r+1,-1);
else
{
if(r-l+1>=14){printf("Yuno\n");continue;}if(l==r){printf("Yuki\n");continue;}
rp(i,l,r){ri d=query(i);ad(i,-d);ad(i+1,d);a[i]=power(a[i],cal(d));}
flg=0;mp.clear();
dfs1(l,(l+r)>>1,0,0);dfs2(((l+r)>>1)+1,r,0,0);if(flg)printf("Yuno\n");else printf("Yuki\n");
}
}
return 0;
}

随机推荐

  1. @atcoder - CODE FESTIVAL 2017 Final - J@ Tree MST

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N 个点,第 i 点有一个点权 Xi,再给定一棵边带权的树 ...

  2. C++中文本的读入

    读入文本文件 标准库包含逐行读取文本文件的功能.然后,你可以一次一行地解析文本文件的每一行. 比如说,你有文件,其中使用数字和逗号表示一个 3x4 的矩阵: , , , 10.5 , , , , , ...

  3. oracle用Where子句替换HAVING子句

    避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. 例如: 低效: ...

  4. laravel5.6 发送邮件附带邮件时,Unable to open file for reading,报错文件路径问题

    https://stackoverflow.com/questions/48568739/unable-to-open-file-for-reading-swift-ioexception-in-la ...

  5. hdu 3662 3D Convex Hull

    Problem - 3662 题意很简单,构造三维凸包,求凸包有多少个面. 代码如下: #include <cstdio> #include <iostream> #inclu ...

  6. 2018-11-19-Roslyn-NameSyntax-的-ToString-和-ToFullString-的区别

    title author date CreateTime categories Roslyn NameSyntax 的 ToString 和 ToFullString 的区别 lindexi 2018 ...

  7. 2004年NOIP普及组复赛题解

    题目涉及算法: 不高兴的津津:入门题: 花生采摘:贪心: FBI树:递归.DP求区间和: 火星人:模拟. 不高兴的津津 题目链接: 简单枚举. 遍历一遍,找到 \(a[i] + b[i]\) 最大的那 ...

  8. Python--day47--内容回顾

    1.什么是数据库

  9. 指针版的PStash(用一个void指针数组, 来保存存入元素的地址) 附模板化实现 p321

    由容器PStash的使用者,负责清除容器中的所有指针.所以用户必须记住放到容器中的是什么类型,在取出时,把取出的void指针转换成对应的类型指针,然后 'delete 转换后的对象指针',才能在清除时 ...

  10. Vue的filter过滤器

    一和二,请参考https://www.cnblogs.com/zui-ai-java/p/11109213.html 三.index.html <!DOCTYPE html> <ht ...