COGS2355 【HZOI2015】 有标号的DAG计数 II
题面
题目描述
给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果
输入格式
一个正整数n
输出格式
一个数,表示答案
样例输入
3
样例输出
25
数据范围和约定
对于第i个点 1<=n<=10000*i
增大了数据范围。
题目分析
COGS2353 【HZOI2015】有标号的DAG计数 I升级版。
在这道题的基础上继续往下化:
f(n)&=\sum_{i=1}^n\frac {n!}{(n-i)!\cdot i!}\cdot(-1)^{i+1}\cdot f(n-i)\cdot2^{(n-i)\cdot i}\\
\frac{f(n)}{n!}&=\sum_{i=1}^n\frac{(-1)^{i+1}}{i!}\cdot \frac{f(n-i)}{(n-i)!}\cdot2^{(n-i)\cdot i}
\end{split}
\]
一个套路
2^{k(n-k)}&=\sqrt{2}^{2kn-2k^2}\\
&=\sqrt{2}^{-n^2+2kn-k^2-k^2+n^2}\\
&=\sqrt{2}^{n^2-k^2-(n-k)^2}\\
&=\frac{\sqrt{2}^{n^2}}{\sqrt{2}^{k^2}\sqrt{2}^{(n-k)^2}}
\end{split}
\]
所以
\]
构造生成函数
F(x)&=\sum_{i=1}\frac{f(i)}{i!\sqrt 2^{i^2}}x^i\\
G(x)&=\sum_{i=1}\frac{(-1)^{i+1}}{i!\sqrt 2^{i^2}}x^i\\
\end{split}
\]
所以
F&=F*G+1\\
F&=\frac 1{1-G}
\end{split}
\]
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353,qr2=116195171;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=1ll*ret*x%mod;
x=1ll*x*x%mod,k>>=1;
}
return ret;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=1<<x;
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
int a[N],b[N],fac[N];
int main(){
freopen("dag_count.in","r",stdin);
freopen("dag_count.out","w",stdout);
int n=Getint(),x=ceil(log2(n+1));
fac[0]=1;
for(int i=1;i<(1<<x);i++)fac[i]=(LL)fac[i-1]*i%mod;
a[0]=1;
for(int i=1;i<(1<<x);i++)
a[i]=(((i&1)?-1:1)*(LL)ksm(fac[i],mod-2)%mod*ksm(ksm(qr2,(LL)i*i%(mod-1)),mod-2)%mod+mod)%mod;
Inv(a,b,1<<x);
cout<<(LL)b[n]*fac[n]%mod*ksm(qr2,(LL)n*n%(mod-1))%mod;
return 0;
}
COGS2355 【HZOI2015】 有标号的DAG计数 II的更多相关文章
- 有标号的DAG计数 II
Description 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 Solution 考虑 \(O(n^2)\) DP 枚举出度为 \( ...
- cogs 2355. [HZOI 2015] 有标号的DAG计数 II
题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
随机推荐
- form表单和CSS基础
form 表单 input type="" 表单的组合标签,用来确定需要的是什么输入类型 type属性值: 文本输入框:text 密码输入框:password 单选按钮:radio ...
- 解压lzma格式的img文件报“Filename has an unknown suffix, skipping”怎么办
1 确认img文件是什么压缩格式 file 文件名 2 报标题错误怎么办? mv initrd.img initrd.img.xz xz -d initrd.img.xz cpio -ivd < ...
- Rsync 恢复 libselinux.SO.1
libselinux.SO.1 这个文件对 CentOS 7很重要, 误删掉后,会导致很多命令无法使用(比如yum ,rpm 命令),利用rsync这个工具来修复. 服务端执行如下配置:(选取正常 ...
- 2019-3-1-win10-uwp-在-VisualStudio-部署失败,找不到-Windows-Phone-可能的原因
title author date CreateTime categories win10 uwp 在 VisualStudio 部署失败,找不到 Windows Phone 可能的原因 lindex ...
- Unicode - 16 位统一超级字符集
描述 (DESCRIPTION) 国际标准 ISO 10646 定义了 通用字符集 (Universal Character Set, UCS). UCS 包含所有别的字符集标准里的字符,并且保证了 ...
- laravel 关掉debug
修改.env文件 APP_DEBUG=false 然后把Laravel服务重启一下
- 5. java运算符
1.算术运算符 注意: % 取余数 (1)自增 (++)前自增:先自增完毕,再运算整个表达式,语句分号前面的都是运算表达式: 后自增,先运算完整个表达式(分号前面的都是表达式),再进行自增: 2.赋值 ...
- C/C++各个周期的学习
C/C++ 程序的生命周期 编写时: 要点:业务,数据结构,控制解耦:健壮:易修改:清晰简单无歧义:易重用:低耦合高内聚:易链接:速度快(时间复杂度,空间复杂度,cache友好): 书籍:<c+ ...
- C中空指针、NULL与0
空指针是指确保可以没有指向任何一个对象的指针.空指针常量值通常使用宏定义NULL来表示. 空指针和任何非空指针比较都不相等,因此经常作为函数异常时的返回值使用. 链表也经常在数据末尾放一个空指针提示后 ...
- [JZOJ6359] 【NOIP2019模拟2019.9.15】小ω的树
题目 题目大意 给你一棵树,带点权和边权. 要你选择一个联通子图,使得点权和乘最小边权最大. 支持修改点权操作. 思考历程 显然,最先想到的当然是重构树了-- 重构树就是在做最大生成树的时候,当两个联 ...