PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem:
multi-horizon probabilistic forecasting tasks;
Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns.
Introduction:
forecasting ----- understanding demands.
traditional methods: arima, holt-winters methods.
recently: lstm
multi-step forecasting can be naturally formulated as sequence-to-sequence learning.
???? what is sequence-to-sequence learning
??? What is multi-horizon forecasting: forecasting on multiple steps in future time.
forecasting the overall distribution!!
quantile regression to make predictions of different quantiles to approximate the target distribution without making distributional assumptions;
mean regression/ least square method;
cite 29,31 produce quantile estimations with quantile loss functions.
RELATED WORK:
1. pre-assume underlying distribution
DeepAR makes probabilistic forecasts by assuming an underlying distribution for time series data, and could produce the probability density functions for target variables by estimating the distribution parameters on each point with multi-layer perceptrons.
2. quantile regressions: don't pre-assume underlying distribution, but generate quantile estimations for target variables.
Attention mechanism, cite 3.
APPROACH:
Use a LSTM-based encoder-decoder model;
The decoder is another recurrent network which takes the encoded history as its initial state, and the future information as inputs to generate the future sequence as outputs. The decoder is bi-directional LSTM. Then the hidden states of BiLSTM are fed into a fully-connected layer/temporal convolution layer.
How to prevent error accumulation: we do not use prediction results of previous time steps to predict the current time step to prevent error accumulation.
???Hard to capture long-term dependency due to memory update. 为什么难以记录长期记忆,lstm本身就包含长期记忆啊,及时memory cell在不断的更新。
??How long the attention should be set? attending to a long history would lead to inaccurate attention as well as inefficient computation.
EXPERIMENTS
test on two datasets: public - GEFCom2014 electricity price forecasting dataset; JD50K sales dataset
multivariable time series: jd50k dataset include product region, category index, promotion type, and holiday event.
evaluate our algorithms with mean abosolute deviation平均绝对偏差, which is defined as the sum of standard quantile loss.
L(yip, yi) = max[q(yip − yi), (q − 1)(yip − yi)]
Training and test Part: 时序数据是纵向切分的,时序数据的前时间段作为训练部分,后时间段作为测试部分。
结果: 和别的方法来比较quantile loss,提升了0.2-0.8,但是loss的最大尺度不知道,所以不知道这个0.2-0.8到底意味着多大的尺度。用MSE loss来评估,还不错,小了很多。如果是点预测的话,可以直接和真实值进行比较,但是quantile estimation就不好衡量准确性了,或者说我目前不知道对应的衡量方法。作者测试了temporal attention width, h = 1和3两个值,这个值的选取需要更多的justify.
me: 和modeling extreme event 那篇文章相比,二者同样添加了attention mechanism, 但二者的不同在与,extreme event那篇文章应用了fixed windows生成固定长度的extreme event 的attention,独立于hidden state 之外,输入是整个序列的extreme event发生与否,而本篇文章的attention是对过去数据h个hidden states的attention记录。相比之下本篇文章的网络设计技巧性更强。但如果说网络结构的创新性,如果biLSTM encoder-decoder本身存在的话,那么本文的贡献只有temporal attention mechanism. 另一个思考是,不同类型的time series,之间的自相关性不同,能不能根据它们的自相关性进行temporal attention width - h的选取标准。越自相关,越被之前的数值影响,因而更需要前面的temporal attention.
Supplementary knowledge:
?? what is temporal attention mechanism and multi-horizon time series.
PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning的更多相关文章
- PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- An overview of time series forecasting models
An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- 【PPT】 Least squares temporal difference learning
最小二次方时序差分学习 原文地址: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd= ...
- PP: Meta-learning framework with applications to zero-shot time-series forecasting
From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- survey on Time Series Analysis Lib
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...
随机推荐
- 异常 lock buffer failed for format 0x23
02-11 21:21:45.669625 14804 14815 W Monkey : // java.lang.RuntimeException: lock buffer failed for f ...
- Android中点击按钮获取星级评分条的评分
场景 效果 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免费下载. 实现 将布局改为Lin ...
- WebStorm2018破解教程
话不多说,直接上教程: 1,下载压缩包,并解压缩,下载地址如下: 链接:谁点谁知道提取码:9am8 2,双击压缩包中的WebStorm-2018.2.1.exe文件,进行安装. 3,安装完成之后,将压 ...
- Linux 文件和目录操作命令(一)
1.cd (change directory)切换到指定目录 - 返回上次目录 .. 返回上层目录 回车 返回主目录 / 根目录 2.cp (copy)复制文件或目录 -r -R 递归复制该目录及其子 ...
- JavaSE学习笔记(12)---线程
JavaSE学习笔记(12)---线程 多线程 并发与并行 并发:指两个或多个事件在同一个时间段内发生. 并行:指两个或多个事件在同一时刻发生(同时发生). 在操作系统中,安装了多个程序,并发指的是在 ...
- 虚拟机(linux)怎么上网
问题描述:本机并没有显示虚拟机(linux)的虚拟网卡,那能不能用虚拟机上网呢,如果要让本机显示出虚拟机的虚拟网卡会有一万步各种安装卸载,那么,在现有条件下可不可以上网呢,答案是可以的. 解决方案: ...
- kali安装后中文乱码
参考: 文章一:https://blog.csdn.net/dust_hk/article/details/103299136?depth_1-utm_source=distribute.pc_rel ...
- 从接口自动化测试框架设计到开发(二)操作json文件、重构json工具类
用例模板里的请求数据多,看起来很乱,所以可以通过访问另外一个文件的方式获取请求数据 把请求数据都放在一个json文件中 取出login的内容: import json fp = open('G:/un ...
- linq行转列
using System;using System.Collections.Generic;using System.Data;using System.Linq;using System.Text; ...
- 怎么解决Chrome浏览器“Failed to load resource: net::ERR_INSECURE_RESPONSE”错误?
用科学方法安装的arcgisServer,需要修改系统时间,但是修改了系统时间,可能会出各种问题, office 不能正确验证,chrome 不能正常使用,访问网页, 如果直接输入本地地址进行访问的话 ...