Problem:

multi-horizon probabilistic forecasting tasks;

Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns.

Introduction:

forecasting ----- understanding demands.

traditional methods: arima, holt-winters methods.

recently: lstm

multi-step forecasting can be naturally formulated as sequence-to-sequence learning.

???? what is sequence-to-sequence learning

??? What is multi-horizon forecasting: forecasting on multiple steps in future time.

forecasting the overall distribution!!

quantile regression to make predictions of different quantiles to approximate the target distribution without making distributional assumptions;

mean regression/ least square method;

cite 29,31 produce quantile estimations with quantile loss functions.

RELATED WORK:

1. pre-assume underlying distribution

DeepAR makes probabilistic forecasts by assuming an underlying distribution for time series data, and could produce the probability density functions for target variables by estimating the distribution parameters on each point with multi-layer perceptrons.

2. quantile regressions: don't pre-assume underlying distribution, but generate quantile estimations for target variables.

Attention mechanism, cite 3.

APPROACH:

Use a LSTM-based encoder-decoder model;

The decoder is another recurrent network which takes the encoded history as its initial state, and the future information as inputs to generate the future sequence as outputs. The decoder is bi-directional LSTM. Then the hidden states of BiLSTM are fed into a fully-connected layer/temporal convolution layer.

How to prevent error accumulation: we do not use prediction results of previous time steps to predict the current time step to prevent error accumulation.

???Hard to capture long-term dependency due to memory update. 为什么难以记录长期记忆,lstm本身就包含长期记忆啊,及时memory cell在不断的更新。

??How long the attention should be set? attending to a long history would lead to inaccurate attention as well as inefficient computation.

EXPERIMENTS

test on two datasets: public - GEFCom2014 electricity price forecasting dataset; JD50K sales dataset

multivariable time series: jd50k dataset include product region, category index, promotion type, and holiday event.

evaluate our algorithms with mean abosolute deviation平均绝对偏差, which is defined as the sum of standard quantile loss.

L(yip, yi) = max[q(yip − yi),  (q − 1)(yip − yi)]

Training and test Part: 时序数据是纵向切分的,时序数据的前时间段作为训练部分,后时间段作为测试部分。

结果: 和别的方法来比较quantile loss,提升了0.2-0.8,但是loss的最大尺度不知道,所以不知道这个0.2-0.8到底意味着多大的尺度。用MSE loss来评估,还不错,小了很多。如果是点预测的话,可以直接和真实值进行比较,但是quantile estimation就不好衡量准确性了,或者说我目前不知道对应的衡量方法。作者测试了temporal attention width, h = 1和3两个值,这个值的选取需要更多的justify.

me: 和modeling extreme event 那篇文章相比,二者同样添加了attention mechanism, 但二者的不同在与,extreme event那篇文章应用了fixed windows生成固定长度的extreme event 的attention,独立于hidden state 之外,输入是整个序列的extreme event发生与否,而本篇文章的attention是对过去数据h个hidden states的attention记录。相比之下本篇文章的网络设计技巧性更强。但如果说网络结构的创新性,如果biLSTM encoder-decoder本身存在的话,那么本文的贡献只有temporal attention mechanism. 另一个思考是,不同类型的time series,之间的自相关性不同,能不能根据它们的自相关性进行temporal attention width - h的选取标准。越自相关,越被之前的数值影响,因而更需要前面的temporal attention.

Supplementary knowledge:

?? what is temporal attention mechanism and multi-horizon time series.

PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning的更多相关文章

  1. PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting

    Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...

  2. PP: Shape and time distortion loss for training deep time series forecasting models

    Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...

  3. An overview of time series forecasting models

    An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...

  4. [转]Multivariate Time Series Forecasting with LSTMs in Keras

    1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...

  5. Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph

    Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...

  6. 【PPT】 Least squares temporal difference learning

    最小二次方时序差分学习 原文地址: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd= ...

  7. PP: Meta-learning framework with applications to zero-shot time-series forecasting

    From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...

  8. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  9. survey on Time Series Analysis Lib

    (1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...

随机推荐

  1. Java自学-多线程 常见线程方法

    Java 常见的线程方法 示例 1 : 当前线程暂停 Thread.sleep(1000); 表示当前线程暂停1000毫秒 ,其他线程不受影响 Thread.sleep(1000); 会抛出Inter ...

  2. 现在连Linux都搞不懂,当初我要是这么学习操作系统就好了!

    原创声明 本文首发于微信公众号[程序员黄小斜] 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 本文思维导图 简介 学习编程,操作系统是你必须要掌握的基础知识,那么操作系统到底是什么呢? 这还 ...

  3. StarUML之四、StarUML的Diagrams(图)与Elements(元素)及相关属性

    Diagrams(图)可以理解为画布  1:创建图 在右侧的Model Explorer管理界面的第一个节点右键,或者选择菜单中Model | Add Diagram | [DiagramType]都 ...

  4. JavaScript 基础学习(二)js 和 html 的结合方式

    第一种 使用一个标签 <script type="text/javascript"> js代码; </script> 第二种 使用 script 标签,引入 ...

  5. css 隐藏滚动条

    如何使用css隐藏滚动条 如何隐藏滚动条,同时仍然可以在任何元素上滚动? 首先,如果需要隐藏滚动条并在内容溢出时显示滚动条,只需要设置overflow:auto样式即可.想要完全隐藏滚动条只需设置ov ...

  6. Linux 防SSH暴力攻击

    在下这几天发现我的VPS 总是莫名遭受到 江苏镇江那边的IP 登录请求攻击 ,跟踪了下路由,发现ip是从蒙古那边出去的,然后意识到可能是有扫描端口的.. 方法一: 现在的互联网非常不安全,很多人没事就 ...

  7. Treap总结

    \(Treap = Tree + Heap\) 树堆(Treap),在数据结构中也称Treap,是指有一个随机附加域满足堆的性质的二叉搜索树,其结构相当于以随机数据插入的二叉搜索树.其基本操作的期望时 ...

  8. 手把手教你如何构建Vue前端组件库

    在前端开发中可能会遇到将相同的功能模板集合成一个组件,供他人调用,这样可以减少重复造轮子,也可以节约人力.财力,更能够提高代码的可维护度:下面将通过详细的步骤教你如何构建一个Vue前端组件. 1.在本 ...

  9. POJ 3253 Fence Repair 贪心 优先级队列

    Fence Repair Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 77001   Accepted: 25185 De ...

  10. #AcWing系列课程Level-2笔记——1. 快速排序算法

    快速排序算法(冒泡排序算法的升级版) 编写快速排序,记住下面的思路,代码也就游刃有余了! 1.首先确定分界点:分界点设为x,可以取q[left],q[(left+right)>>2],q[ ...