PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem:
multi-horizon probabilistic forecasting tasks;
Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns.
Introduction:
forecasting ----- understanding demands.
traditional methods: arima, holt-winters methods.
recently: lstm
multi-step forecasting can be naturally formulated as sequence-to-sequence learning.
???? what is sequence-to-sequence learning
??? What is multi-horizon forecasting: forecasting on multiple steps in future time.
forecasting the overall distribution!!
quantile regression to make predictions of different quantiles to approximate the target distribution without making distributional assumptions;
mean regression/ least square method;
cite 29,31 produce quantile estimations with quantile loss functions.
RELATED WORK:
1. pre-assume underlying distribution
DeepAR makes probabilistic forecasts by assuming an underlying distribution for time series data, and could produce the probability density functions for target variables by estimating the distribution parameters on each point with multi-layer perceptrons.
2. quantile regressions: don't pre-assume underlying distribution, but generate quantile estimations for target variables.
Attention mechanism, cite 3.
APPROACH:
Use a LSTM-based encoder-decoder model;
The decoder is another recurrent network which takes the encoded history as its initial state, and the future information as inputs to generate the future sequence as outputs. The decoder is bi-directional LSTM. Then the hidden states of BiLSTM are fed into a fully-connected layer/temporal convolution layer.
How to prevent error accumulation: we do not use prediction results of previous time steps to predict the current time step to prevent error accumulation.
???Hard to capture long-term dependency due to memory update. 为什么难以记录长期记忆,lstm本身就包含长期记忆啊,及时memory cell在不断的更新。
??How long the attention should be set? attending to a long history would lead to inaccurate attention as well as inefficient computation.
EXPERIMENTS
test on two datasets: public - GEFCom2014 electricity price forecasting dataset; JD50K sales dataset
multivariable time series: jd50k dataset include product region, category index, promotion type, and holiday event.
evaluate our algorithms with mean abosolute deviation平均绝对偏差, which is defined as the sum of standard quantile loss.
L(yip, yi) = max[q(yip − yi), (q − 1)(yip − yi)]
Training and test Part: 时序数据是纵向切分的,时序数据的前时间段作为训练部分,后时间段作为测试部分。
结果: 和别的方法来比较quantile loss,提升了0.2-0.8,但是loss的最大尺度不知道,所以不知道这个0.2-0.8到底意味着多大的尺度。用MSE loss来评估,还不错,小了很多。如果是点预测的话,可以直接和真实值进行比较,但是quantile estimation就不好衡量准确性了,或者说我目前不知道对应的衡量方法。作者测试了temporal attention width, h = 1和3两个值,这个值的选取需要更多的justify.
me: 和modeling extreme event 那篇文章相比,二者同样添加了attention mechanism, 但二者的不同在与,extreme event那篇文章应用了fixed windows生成固定长度的extreme event 的attention,独立于hidden state 之外,输入是整个序列的extreme event发生与否,而本篇文章的attention是对过去数据h个hidden states的attention记录。相比之下本篇文章的网络设计技巧性更强。但如果说网络结构的创新性,如果biLSTM encoder-decoder本身存在的话,那么本文的贡献只有temporal attention mechanism. 另一个思考是,不同类型的time series,之间的自相关性不同,能不能根据它们的自相关性进行temporal attention width - h的选取标准。越自相关,越被之前的数值影响,因而更需要前面的temporal attention.
Supplementary knowledge:
?? what is temporal attention mechanism and multi-horizon time series.
PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning的更多相关文章
- PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- An overview of time series forecasting models
An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- 【PPT】 Least squares temporal difference learning
最小二次方时序差分学习 原文地址: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd= ...
- PP: Meta-learning framework with applications to zero-shot time-series forecasting
From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- survey on Time Series Analysis Lib
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...
随机推荐
- AndroidStudio修改默认C盘配置文件夹(.android.gradle.AndroidStudio)以及修改后避免踩的坑
场景 AndroidStudio下载安装教程(图文教程): https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/103672471 在上 ...
- Git 工作流程和Git分支管理策略
git-flow 阮一峰大佬写的文章真不错 git-flow, github-flow, gitlab-flow 阮一峰大佬写的文章真不错
- PHPJN0001:phpmyadmin 允许密码为空 设置
phpmyadmin连接mysql数据库,出于安全考虑,默认不允许使用空密码连接数据库.因为数据库一般都设置密码访问. 但如果只是本机环境测试使用,每隔一段时间都需要填写密码,不是很方便. 如果没有修 ...
- nCompass-产品配置基础
nCompass-产品配置基础 设备上架后,浏览器登陆设备的管理IP,输入用户名和密码, 登入进入视图展示页面 1. 添加许可 新设备上架之后,要添加许可方能使用. 步骤: 系统设置 --- 许可-- ...
- Git学习笔记(windows git之初体验)
阿里国内镜像地址: https://npm.taobao.org/mirrors/git-for-windows/ 最近在学习廖雪峰老师关于git的教程,链接可以在我的首页找到.首先使用国内镜像下载并 ...
- 定时器_在.net core3.0 webapi中添加自定义定时器功能
前言:想在.net framework环境使用自定义定时器的话,参考我的另一篇文章:https://www.cnblogs.com/lxhbky/p/10242839.html 想在.net core ...
- ts中的接口
// 接口:接口是一种定义行为和规范,在程序设计中接口起到限制和规范的作用.接口定义某一 // 一批类所需要遵循的规范,接口不关系这些类的内部实现,之规定这些类必须提供某些方法 /* 1.对批量方法进 ...
- too many open files异常及解决办法
1.问题描述: 最近项目中由于大批量的操作文件,项目部署在Linux服务器上,突然发现出现了 too many open files异常. 经过一番查阅,(直译过来就是文件打开数过多)但是查阅了相关的 ...
- generalization error
泛化误差 机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系? 准与确的关系 bias 偏差:模型越复杂,模型的偏差越小,方差越小,因此会出现overfitt ...
- mongoose中Documents的save方法
调用save方法保存数据有的时候是插入有时候是更新, 数据库 我知道save在保存的时候会检测数据的更改,只是更新更改的部分.所以我重复save时,只是createAt更改那么我最后只应该保存了一条数 ...