PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem:
multi-horizon probabilistic forecasting tasks;
Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns.
Introduction:
forecasting ----- understanding demands.
traditional methods: arima, holt-winters methods.
recently: lstm
multi-step forecasting can be naturally formulated as sequence-to-sequence learning.
???? what is sequence-to-sequence learning
??? What is multi-horizon forecasting: forecasting on multiple steps in future time.
forecasting the overall distribution!!
quantile regression to make predictions of different quantiles to approximate the target distribution without making distributional assumptions;
mean regression/ least square method;
cite 29,31 produce quantile estimations with quantile loss functions.
RELATED WORK:
1. pre-assume underlying distribution
DeepAR makes probabilistic forecasts by assuming an underlying distribution for time series data, and could produce the probability density functions for target variables by estimating the distribution parameters on each point with multi-layer perceptrons.
2. quantile regressions: don't pre-assume underlying distribution, but generate quantile estimations for target variables.
Attention mechanism, cite 3.
APPROACH:
Use a LSTM-based encoder-decoder model;

The decoder is another recurrent network which takes the encoded history as its initial state, and the future information as inputs to generate the future sequence as outputs. The decoder is bi-directional LSTM. Then the hidden states of BiLSTM are fed into a fully-connected layer/temporal convolution layer.
How to prevent error accumulation: we do not use prediction results of previous time steps to predict the current time step to prevent error accumulation.
???Hard to capture long-term dependency due to memory update. 为什么难以记录长期记忆,lstm本身就包含长期记忆啊,及时memory cell在不断的更新。
??How long the attention should be set? attending to a long history would lead to inaccurate attention as well as inefficient computation.
EXPERIMENTS
test on two datasets: public - GEFCom2014 electricity price forecasting dataset; JD50K sales dataset
multivariable time series: jd50k dataset include product region, category index, promotion type, and holiday event.
evaluate our algorithms with mean abosolute deviation平均绝对偏差, which is defined as the sum of standard quantile loss.
L(yip, yi) = max[q(yip − yi), (q − 1)(yip − yi)]
Training and test Part: 时序数据是纵向切分的,时序数据的前时间段作为训练部分,后时间段作为测试部分。
结果: 和别的方法来比较quantile loss,提升了0.2-0.8,但是loss的最大尺度不知道,所以不知道这个0.2-0.8到底意味着多大的尺度。用MSE loss来评估,还不错,小了很多。如果是点预测的话,可以直接和真实值进行比较,但是quantile estimation就不好衡量准确性了,或者说我目前不知道对应的衡量方法。作者测试了temporal attention width, h = 1和3两个值,这个值的选取需要更多的justify.
me: 和modeling extreme event 那篇文章相比,二者同样添加了attention mechanism, 但二者的不同在与,extreme event那篇文章应用了fixed windows生成固定长度的extreme event 的attention,独立于hidden state 之外,输入是整个序列的extreme event发生与否,而本篇文章的attention是对过去数据h个hidden states的attention记录。相比之下本篇文章的网络设计技巧性更强。但如果说网络结构的创新性,如果biLSTM encoder-decoder本身存在的话,那么本文的贡献只有temporal attention mechanism. 另一个思考是,不同类型的time series,之间的自相关性不同,能不能根据它们的自相关性进行temporal attention width - h的选取标准。越自相关,越被之前的数值影响,因而更需要前面的temporal attention.
Supplementary knowledge:
?? what is temporal attention mechanism and multi-horizon time series.
PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning的更多相关文章
- PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- An overview of time series forecasting models
An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- 【PPT】 Least squares temporal difference learning
最小二次方时序差分学习 原文地址: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd= ...
- PP: Meta-learning framework with applications to zero-shot time-series forecasting
From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- survey on Time Series Analysis Lib
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...
随机推荐
- nginx 正向代理与反向代理
一.介绍 反向代理:让Internet上的用户可以访问局域网内的资源,中间设置一个代理服务器,如下所示,红色圈是指局域网内的站点(myweb站点是我们的站点,例如iis).箭头不能反过来 正向代理:客 ...
- rhel加载raid卡驱动安装系统
有时候需要把系统安装到RAID上,但是系统本身又缺少该RAID卡驱动,就会导致到硬盘分区时提示没有发现可用磁盘,这时我们就需要首先加载该RAID卡驱动,从而让系统识别到要使用的磁盘. RHEL5 和 ...
- 关于GC(垃圾回收)
当我用new创建一个对象时,当可分配的内存不足GC就会去回收未使用的对象,但是GC的操作是非常复杂的,会占用很多CPU时间,对于移动设备来说频繁的垃圾回收会严重影响性能.下面的建议可以避免GC频繁操作 ...
- UPAD for iCloud
UPAD for iCloud笔记软件 在笔记软件中创建文件夹橡皮:按两下橡皮就是清除整个屏幕导出笔记到pdf,或者直接导出到其他应用中打开在当前页面中新建一个页面删除某个页面
- GCD相关
板子: ? gcd(b, a % b) : a; } POJ1930 题意:给你一个无限循环小数,给到小数点后 9 位,要求这个数的分数形式. 解法: 要想解决这道题,首先应该了解如何将循环小数化为分 ...
- django-分页(非海量数据)
views.py class AnalysisDataHandler(View): def get(self, request): analysis_data = MonitorCenterDataA ...
- 我眼中的ASP.NET.MVC
MVC MVC全名 : Model View Controller ( Model-模型 View-视图 Controller-控制器)是一种经典的,经久不衰的,屹立不倒的软件设计框架.实现了业务逻 ...
- 第二章.学习halcon的准备工作
*图片读取 read_image (Test1, 'C:/Users/Administrator/Desktop/new/Test1.jpg') *文件夹读取 list_files ('C:/User ...
- 位运算基础知识及简单例题(待补全Hamilton)
位运算 +++ 1 : 0000000000...01 2 : 0000000000...10 3 : 0000000000...11 补码 1 + x = 0000000000...00 1 + 1 ...
- 【计算语言学实验】基于 Skip-Gram with Negative Sampling (SGNS) 的汉语词向量学习和评估
一.概述 训练语料来源:维基媒体 https://dumps.wikimedia.org/backup-index.html 汉语数据 用word2vec训练词向量,并用所学得的词向量,计算 pku_ ...