将m质因子分解,然后枚举选取的质因子个数i进行容斥,每种情况进行一次dfs即可

dfs结束标记:当质因子个数达到i时退出递归,同时累加该解对应的方案数

/*
给定n,m
共有n个数的数组a,不超过m
m^n减掉 gcd(a)>1的情况
先把m质因数分解
然后枚举不同的质因子个数即可
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define ll long long ll n,m,p[],mm,ans,sum; ll Pow(ll a,ll b){
ll res=;
while(b){
if(b%)res=res*a;
b>>=;a=a*a;
}
return res;
}
void divide(){
mm=;ll tmp=m;
for(int i=;i*i<=m;i++)
if(tmp%i==){
p[++mm]=i;
while(tmp%i==)tmp/=i;
}
if(tmp>)p[++mm]=tmp;
} int a[];//临时数组用来存用到的质因子
void get_sum(int pos,int cnt,int num){
if(cnt>num){//搜出了一组解
ll tmp=m;
for(int i=;i<cnt;i++)tmp/=a[i];
sum+=Pow(tmp,n);
return;
}
for(int i=pos;i<=mm;i++)//枚举下一个位置
a[cnt]=p[i],get_sum(i+,cnt+,num);
} int main(){
while(cin>>n>>m){
ans=Pow(m,n);
divide();//分解质因子m
for(int i=;i<=mm;i++){
sum=;
get_sum(,,i);
if(i&) ans-=sum;//关于质因子个数的容斥
else ans+=sum;
}
cout<<ans<<endl;
}
}

容斥原理——poj1091的更多相关文章

  1. 【容斥原理】【分解质因数】poj1091 跳蚤

    题意转化为求一个线性组合a1*x1+a2*x2+...+an*xn+m*xn+1=1在什么时候可以有解.(ai在1~m的范围内任取) 易得当且仅当gcd(a1,a2,...,an)=1时可能有解. 然 ...

  2. poj1091:跳蚤【容斥原理】

    题目大意:中文题就不翻译了 思路:假设跳蚤选择X1个第一张卡片,X2个第二张卡片...Xn个第n张卡片,Xn+1张写着m的卡片,那么就可以列出方程:a1*X1+a2*X2+…+an*Xn+m*X(n+ ...

  3. 【poj1091】 跳蚤

    http://poj.org/problem?id=1091 (题目链接) 题意 给出一张卡片,上面有n+1个数,其中最大的数为m,每次可以向前或者向后走卡片上面的步数.问有多少种方案选出n个数组成一 ...

  4. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  5. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  6. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  7. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  8. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  9. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

随机推荐

  1. jquery preventDefault()事件

    定义和用法 preventDefault() 方法阻止元素发生默认的行为(例如,当点击提交按钮时阻止对表单的提交). 语法 event.preventDefault() 参数 描述 event 必需. ...

  2. sql准确判断某个ip

    问题:如图 当我执行sql要准确查找某个IP是属于哪个库室时候,我刚开始是这样写的 select * from Definition_Read_Room where HFIP like '%172.2 ...

  3. varnish(转http://www.ttlsa.com/nginx/varnish-4-configure-file/)

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ...

  4. 来个我一起学习Python把!!!(新手共同努力)

    <初识Python> 大家好,让我们一起来学习Python,因本人也是个新手但我会把我所学的东西分享出来,并记录自己的经验学习过程,不单单是分享代码,会详细的讲解,如有错误地方希望大家指点 ...

  5. uoj213 【UNR #1】争夺圣杯

    题目 设\(f_i\)表示所有长度为\(i\)的区间的最大值的和,求\(\bigoplus \sum_{i=1}^nf_i\) 不难发现随机数据非常好做 由于一个随机序列的前缀最大值期望只会变化\(\ ...

  6. 2018ICPC焦作 F. Honeycomb /// BFS

    题目大意: 给定n m表示一共n行每行m个蜂巢 求从S到T的最短路径 input 1 3 4 +---+ +---+ / \ / \ + +---+ +---+ \ \ / \ + + S +---+ ...

  7. 面试系列32 集群部署时的分布式session如何实现

    session是啥?浏览器有个cookie,在一段时间内这个cookie都存在,然后每次发请求过来都带上一个特殊的jsessionid cookie,就根据这个东西,在服务端可以维护一个对应的sess ...

  8. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  9. Tesseract&tesseractOCRiOS

    安装tesseract在上篇. 1.安装之后默认语言包只有英文包,在github上下载中文简体,链接:https://github.com/tesseract-ocr/tessdata 然后放入tes ...

  10. Batch - C:\Progra~1是什么意思

    就是那种DOS下的8.3的规范,可以这样写 C:\Progra~1也可以这样写全名字的 "C:\Program File",因为这个路径中的文件夹名有空格,要用两个英文输入法下的双 ...