Johnson–Lindenstrauss 定理是这样的:一个一百万维空间里的随便一万个点,一定可以几乎被装进一个几十维的子空间里!

严格说来是这样:在 M 维空间中的 N 个点,几乎总是被包含在一个 D 维子空间里的。这里的 D 按照直觉应当等于 N 的阶,可是实际上我们只需要让 D 是 log(N) 的阶就可以了。这里「几乎被包含在」的确切含义是它在这个子空间上的投影几乎是等距的(允许有一个 ε 的误差,而常数 D/log(N) 就依赖于 ε)。很显然,这件事情在高维数据降维时有极重要的意义。

这个定理的证明很初等。它依赖于这样的一个基本概率事实:一个随机的 M 维单位向量到一个随机的 D 维子空间上的投影的长度几乎一定约等于 D/M。这件事情本身也有点不同寻常,虽然它可以通过简单的计算来证实。这是概率论计算中常常出现的由于高维度而导致的反直觉现象的一例。

这让我想起另一个高维度导致的悖论,是我在学大数定律时了解到的。在 M 维单位立方体中随机取一个点,当 M 充分大时根据大数定理容易算出这个点到立方体中心的距离几乎一定等于 √(M/3)/2。于是这就说明 M 维实心单位立方体几乎就完全位于一个半径为 √(M/3)/2 的球壳上。这里没有任何捣鬼之处,事实上就是如此。

Johnson–Lindenstrauss 引理表明任何高维数据集均可以被随机投影到一个较低维度的欧氏空间,同时可以控制pairwise距离的失真.

理论边界

由一个随机投影P所引入的失真是确定的,这是由于p定义了一个esp-embedding.其概率论定义如下:

u和v是从一个形状是[n样例,n特征]=[n_samples, n_features]的数据集中的任意行,p室友一个形状是[n成分,n特征]=[n_components, n_features]的随机高斯N(0,1)矩阵的投影(或一个稀疏Achlioptas矩阵).

用于保证eps-embedding的最小成分数有下面的公式得到:

Johnson–Lindenstrauss 定理-Johnson–Lindenstrauss lemma的更多相关文章

  1. 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson

    根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...

  2. Latex中定义、定理、引理、证明 设置方法总结

    Latex中定义.定理.引理.证明 设置方法总结 在LaTex中需要有关定理.公理.命题.引理.定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheore ...

  3. Theorem、Proposition、Lemma和Corollary等的解释与区别

    Theorem:定理.是文章中重要的数学化的论述,一般有严格的数学证明. Proposition:可以翻译为命题,经过证明且interesting,但没有Theorem重要,比较常用. Lemma:一 ...

  4. [未完成]scikit-learn一般实例之九:用于随机投影嵌入的Johnson–Lindenstrauss lemma边界

    Johnson–Lindenstrauss 引理表明任何高维数据集均可以被随机投影到一个较低维度的欧氏空间,同时可以控制pairwise距离的失真. 理论边界 由一个随机投影P所引入的失真是确定的,这 ...

  5. 基于Hash算法的高维数据的最近邻检索

    一.摘要 最紧邻检索:一种树基于树结构,一种是基于hash a.随机投影算法,需要产生很多哈希表,才能提高性能. b.基于学习的哈希算法在哈希编码较短时候性能不错,但是增加编码长度并不能显著提高性能. ...

  6. NLP相关问题中文本数据特征表达初探

    1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...

  7. NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论

    1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...

  8. Java牛人

    Java领域有很多著名的人物,他们为Java社区编写框架.产品.工具或撰写书籍改变了Java编程的方式.本文是<最受欢迎的8位Java牛人>的2.0版本. PS:排名不分先后.本文的信息整 ...

  9. Address Book(地址薄)

    <?xml version="1.0" encoding="UTF-8"?> <?import javafx.scene.Scene?> ...

随机推荐

  1. 暑假集训test-8-31(pm)

    以为可以AK,结果t3没有调出来,然后被林巨踩了. everyday被踩,很开心. 林巨真的好巨啊,这么多天已经总计虐我75分了. 1.玩具装箱 第一眼还以为是那道斜率优化dp,结果是个签到水题. / ...

  2. NX二次开发-UFUN求对象的最大边界框UF_MODL_ask_bounding_box

    NX9+VS2012 #include <uf.h> #include <uf_obj.h> #include <uf_modl.h> #include <u ...

  3. hdu4352-XHXJ's LIS状压DP+数位DP

    (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 题意:传送门  原题目描述在最下面.  在区间内把整数看成一个阿拉伯数字的集合,此集合中最长严格上升子序列的长度为k的个数. 思路: ...

  4. hive简述

    显示表头,当前终端有效 set hive.cli.print.header=true; 查看表结构 desc table; 详细的表结构 desc formatted table; 删除表 drop ...

  5. class4_Listbox 列表部件

    最终的运行效果图: #!/usr/bin/env python# -*- coding:utf-8 -*-# --------------------------------------------- ...

  6. OCP—051试题

    FROM: http://blog.itpub.net/26736162/viewspace-1252569/?page=2 http://blog.csdn.net/elearnings/artic ...

  7. day 91 Django学习之django自带的contentType表

      Django学习之django自带的contentType表   通过django的contentType表来搞定一个表里面有多个外键的简单处理: 摘自:https://blog.csdn.net ...

  8. [kuangbin带你飞]专题一 简单搜索 - K - 迷宫问题

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  9. 剑指offer——20删除链表中重复的结点

    题目描述 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4->5 处理后 ...

  10. 【72. 编辑距离】【困难】【线性DP】

    给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1: 输 ...