前言:在具体执行Hadoop程序的时候,我们要根据不同的情况来设置Map的个数。除了设置固定的每个节点上可运行的最大map个数外,我们还需要控制真正执行Map操作的任务个数。
 1.如何控制实际运行的map任务个数
 我们知道,文件在上传到Hdfs文件系统的时候,被切分成不同的Block块(默认大小为64MB)。但是每个Map处理的分块有时候并不是系统的物理Block块大小。实际处理的输入分块的大小是根据InputSplit来设定的,那么InputSplit是怎么得到的呢?

InputSplit=Math.max(minSize, Math.min(maxSize, blockSize)

其中:minSize=mapred.min.split.size

maxSize=mapred.max.split.size

我们通过改变InputFormat中分片的多少来控制实际使用的Map数量,而控制InputFormat中的分片多少就需要控制每个InputSplit分片的大小
 2.如何控制每个split分片的大小
 Hadoop默认的输入格式是TextInputFormat,他里边定义了文件读取的方式和分片的方式。我们打开他的源文件(org.apache.hadoop.mapreduce.lib.input包中):

package org.apache.hadoop.mapreduce.lib.input;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.SplittableCompressionCodec;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
public class TextInputFormat extends FileInputFormat<LongWritable, Text> {
@Override
public RecordReader<LongWritable, Text>
createRecordReader(InputSplit split,
TaskAttemptContext context) {
return new LineRecordReader();
}
@Override
protected boolean isSplitable(JobContext context, Path file) {
CompressionCodec codec =
new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
if (null == codec) {
return true;
}
return codec instanceof SplittableCompressionCodec;
}
}

通过源代码,我们发现TextInputFormat继承了FileInputFormat,而在TextInputFormat中,我们并没有发现具体的进行文件切分的部分,TextInputFormat应该是采用了FileInputFormat默认的InputSplit方法。因此,我们打开FileInputFormat的源代码,在其中发现:

public static void setMinInputSplitSize(Job job,long size) {
job.getConfiguration().setLong("mapred.min.split.size", size);
}
public static long getMinSplitSize(JobContext job) {
return job.getConfiguration().getLong("mapred.min.split.size", 1L);
}

public static void setMaxInputSplitSize(Job job,long size) {
job.getConfiguration().setLong("mapred.max.split.size", size);
}
public static long getMaxSplitSize(JobContext context) {
return context.getConfiguration().getLong("mapred.max.split.size",Long.MAX_VALUE);
}

如上我们可以看到,Hadoop在这里实现了对mapred.min.split.size和mapred.max.split.size的定义,且默认值分别为1和Long的最大。因此,我们在程序只需重新赋值给这两个值就可以控制InputSplit分片的大小了。
3.假如我们想要设置的分片大小为10MB
 则我们可以在MapReduce程序的驱动部分添加如下代码:

TextInputFormat.setMinInputSplitSize(job,1024L);//设置最小分片大小

TextInputFormat.setMaxInputSplitSize(job,1024×1024×10L);//设置最大分片大小

通过inputSplit分片size控制map数目的更多相关文章

  1. 深度分析如何在Hadoop中控制Map的数量

    深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...

  2. 如何在hadoop中控制map的个数

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  3. hadoop控制map个数(转)

    原文链接:https://blog.csdn.net/lylcore/article/details/9136555     hadooop提供了一个设置map个数的参数mapred.map.task ...

  4. 如何在hadoop中控制map的个数 分类: A1_HADOOP 2015-03-13 20:53 86人阅读 评论(0) 收藏

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  5. 深度分析如何在Hadoop中控制Map的数量(摘抄)

    很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...

  6. 设置每个datanode里面的map数目,提高运行效率

    首先可以通过hdfs.site.xml下面的dfs.block.size来设置数据的块大小,这个参数会决定map的总数目(4194304=4m) 然后通过mapred.site.xml下面的mapre ...

  7. Hadoop MR Job 关于如何控制Map Task 数量

    整理下,基本分两个方式: 一.对于大量大文件(大于block块设置的大小) 增大minSize,即增大mapred.min.split.size的值,原因:splitsize=max(minisize ...

  8. hive优化,控制map、reduce数量

    一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为1 ...

  9. Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputFormat的map任务数量)

    前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduce ...

随机推荐

  1. 二分图——最小覆盖poj2226

    详见进阶指南 #include<iostream> #include<cstring> #include<cstdio> using namespace std; ...

  2. LUOGU P1654 OSU! (概率期望)

    传送门 解题思路 首先考虑对于一个点来说,如果这个点是1的话,那么对于答案来说 $(ans+1)^3=ans^3+3*ans^2+3*ans+1$,这对于上一个答案来说其实贡献了 $3*ans^2+3 ...

  3. pyQT Dialog默认选中某一个选项问题的解决

    方法一: 在新建ui文件时不要新建Dialog # -*- coding: utf-8 -*- # Form implementation generated from reading ui file ...

  4. Java英语面试题(核心知识篇)

    Java英语面试题(核心知识篇) Question: What is transient variable?Answer: Transient variable can't be serialize. ...

  5. IoC深入理解

    1. IoC理论的背景 我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图1:软件系统中耦合的对象 如果我们打开机 ...

  6. PHP面向对象魔术方法之__get 和 __set函数

    l 基本的介绍 (1) 当我们去使用不可以访问的属性时,系统就会调用__get方法. (2) 不可以访问的属性指的是(1 . 该属性不存在 2. 直接访问了protected或者private属性) ...

  7. 05_Hibernate数据库连接池

    一.配置连接池 连接池:连接池是创建和管理数据库连接的缓冲池技术. 优点:合理利用数据库连接资源.简化的编程模式.受控的资源使用. 主流连接池: DBCP(DataBase connection po ...

  8. python 筛选序列中的元素

    列表生成式 a = [1, 2, 3, 4, -1, -2] b = [i for i in a if a > 0] 如果数据量很大,会产生一个庞大的结果.这时可以用生成器表达式: b = (i ...

  9. 去掉IE提示:internet explorer 已限制此网页运行脚本或Activex控件

    运行加载OCX控件的HTML文件,显示提示如下图: 解决方法是在HTML文件中添加一行注释代码,如下图: 就是红色框内的代码.即:<!-- saved from url=(0014)about: ...

  10. 新浪新闻API

    新浪新闻API ustcmio 关注 2017.01.15 20:44* 字数 536 阅读 2479评论 2喜欢 7 新浪新闻的API:1.访问手机新浪网https://sina.cn/?from= ...