转化一下题意:给出矩阵每行每列的最大值,求满足条件的矩阵个数。

先将A,B按从大到小排序,显然没有什么影响。如果A的最大值不等于B的最大值那么无解否则一定有解。

考虑从大到小枚举A,B中出现的数s,那么可以将这个矩形分成一些不同的矩形或者L形使之互不影响,且位置的值在[0,s]中,且每行每列的最大值均为s,最后用分步乘法计数原理求解。

例:

5

1 2 2 3 5

2 2 3 4 5

由于矩形是特殊的L形于是我们只考虑L形:

设拐点的矩形为a*b,L上部高为c,左部长为d。

考虑容斥,设f[i]为至少有i行的限制不满足条件(每列都要满足条件),

那么$f[i]=C_a^i * ( s^i * ( (s+1)^{a+c-i} - s^{a+c-i} ))^b * (s^i * (s+1)^{a-i} )^d$

$s^i$保证i行不满足限制,$((s+1)^{a+c-i}-s^{a+c-i})$表示剩下的至少一个满足限制条件(为保证列满足),b次方即每列。这样就考虑完了前b列。

那么多出来的d列呢?大致相同。$(s^i*(s+1)^{a-i})^d$可以发现并没有保证列满足,因为L型左部上面一定比这里大,那么已经保证列满足限制,所以这里就随便选了。

$ans=\prod \sum _{i=0}^{a} -1^i*f[i]$

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
const int mod=1e9+;
struct Hash_map
{
int fi[],ni[],siz;
int key[],val[];
inline int &operator [] (int x)
{
int k=x%;int i=fi[k];
for(;i&&key[i]!=x;i=ni[i]);
if(!i)i=++siz,key[i]=x,val[i]=,ni[i]=fi[k],fi[k]=i;
return val[i];
}
}ta,tb;
LL poww(LL a,LL b);
LL jc[],inv[];
LL CC(LL n,LL m){return jc[n]*inv[m]%mod*inv[n-m]%mod;}
int n,A[],B[],C[],cnt;
bool cmp(int a,int b){return a>b;}
LL f[];
signed main()
{
// freopen("silhouette4.in","r",stdin); jc[]=inv[]=;for(int i=;i<=;i++)jc[i]=jc[i-]*i%mod,inv[i]=poww(jc[i],mod-);
cin>>n;
for(int i=;i<=n;i++)cin>>A[i],C[++cnt]=A[i],ta[A[i]]++;
for(int i=;i<=n;i++)cin>>B[i],C[++cnt]=B[i],tb[B[i]]++;
sort(A+,A+n+,cmp);sort(B+,B+n+,cmp);
if(A[]!=B[]){puts("");return ;}
sort(C+,C+cnt+,cmp);cnt=unique(C+,C+cnt+)-C-; LL ans=;
int la=,lb=,na=,nb=;
for(int i=;i<=cnt;i++)
{
int s=C[i];
la=na,lb=nb;
while(na<n&&A[na+]==s)na++;
while(nb<n&&B[nb+]==s)nb++; int a=na-la,b=nb-lb,c=la,d=lb;
LL tem=;
for(int j=;j<=a;j++)
{
f[j]=CC(a,j)*poww( ( poww(s,j) * (poww(s+,a+c-j)-poww(s,a+c-j)%mod) )%mod ,b)%mod*
poww( poww(s,j)*poww(s+,a-j)%mod ,d)%mod;
if(j&)tem-=f[j];else tem+=f[j];
tem=(tem%mod+mod)%mod;
}
ans=(ans*tem)%mod;
}
printf("%lld\n",ans);
}
LL poww(LL a,LL b)
{
a%=mod;LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b=b>>;
}
return ans;
}

HZOJ Silhouette的更多相关文章

  1. Qt 3D的研究(十):描边渲染(轮廓渲染)以及Silhouette Shader

    Qt 3D的研究(十):描边渲染(轮廓渲染)以及Silhouette Shader 之前写了两篇文章,介绍了我在边缘检測上面的研究.实际上.使用GPU对渲染图像进行边缘检測.前提是须要进行两遍渲染.前 ...

  2. [CSP-S模拟测试]:Silhouette(数学)

    题目描述 有一个$n\times n$的网格,在每个格子上堆叠了一些边长为$1$的立方体. 现在给出这个三维几何体的正视图和左视图,求有多少种与之符合的堆叠立方体的方案.两种方案被认为是不同的,当且仅 ...

  3. 如何选择kmeans中的k值——肘部法则–Elbow Method和轮廓系数–Silhouette Coefficient

    肘部法则–Elbow Method 我们知道k-means是以最小化样本与质点平方误差作为目标函数,将每个簇的质点与簇内样本点的平方距离误差和称为畸变程度(distortions),那么,对于一个簇, ...

  4. csp-s模拟测试59(10.4)「Reverse」(set)·「Silhouette」(容斥)

    A. Reverse 菜鸡wwb又不会了..... 可以线段树优化建边,然而不会所以只能set水了 发现对于k和当前反转点固定的节点x确定奇偶性所到达的节点奇偶性是一定的 那么set维护奇偶点,然后每 ...

  5. Cesium源码剖析---Post Processing之物体描边(Silhouette)

    Cesium在1.46版本中新增了对整个场景的后期处理(Post Processing)功能,包括模型描边.黑白图.明亮度调整.夜视效果.环境光遮蔽等.对于这么炫酷的功能,我们绝不犹豫,先去翻一翻它的 ...

  6. hzoj 2301(莫比乌斯反演)

    题意 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公 数. 思路: 与先前的那个相比,这次a,c并不一定 ...

  7. HZOJ 单

    两个子任务真的是坑……考试的时候想到了60分的算法,然而只拿到了20分(各种沙雕错,没救了……). 算法1: 对于测试点1,直接n遍dfs即可求出答案,复杂度O(n^2),然而还是有好多同学跑LCA/ ...

  8. 20191102 「HZOJ NOIP2019 Round #12」20191102模拟

    先开坑. md原题写挂我也真是... 100+20+10 白夜 打表大法吼 显然,不在环上的点对答案的贡献是 \((k-cycle)^{k-1}\) . 打表得到环上的递推式,矩阵一下乘起来就好了. ...

  9. 20191004 「HZOJ NOIP2019 Round #9」20191004模拟

    综述 第一次 rk1 ,激动. 题目是 COCI 18/19 Round #1 的三至五题. 得分 \(100+100+20\) \(\mathrm{cipele}\) 问题描述 HZOJ1313 题 ...

随机推荐

  1. html 输入框显示“小叉叉”的清空方法

    在IE10以下,我们的输入框input会出现小叉叉.怎么解决这个问题呢? 针对input框我们做一个处理 <style type="text/css"> input:: ...

  2. http://codeforces.com/gym/100623/attachments H题

    http://codeforces.com/gym/100623/attachments H题已经给出来的,包括后来添加的,都累加得到ans,那么从1-ans都是可以凑出来的,如果ans<a[n ...

  3. rabbitmq实现单发送单接收

    1.创建两个项目.都使其支持rabbitmq (1)在pom.xml文件中添加支持rabbitmq的jar包 <dependency> <groupId>org.springf ...

  4. agc014F Strange Sorting

    这套题比较简单,以为自己能够独立A掉D和E,或许就能自己A掉F,看来还真是想多了 题意:给一个$n$的全排列,每次操作把$max(a[1],a[2],...,a[i]) = a[i]$的记为$high ...

  5. SSM11-Redis---jedis的使用方法以及缓存同步

    1. Jedis 需要把jedis依赖的jar包添加到工程中.Maven工程中需要把jedis的坐标添加到依赖. 推荐添加到服务层.E3-content-Service工程中. 1.1. 连接单机版 ...

  6. 利用webuploader插件上传图片文件,完整前端示例demo,服务端使用SpringMVC接收

    利用WebUploader插件上传图片文件完整前端示例demo,服务端使用SpringMVC接收 Webuploader简介   WebUploader是由Baidu WebFE(FEX)团队开发的一 ...

  7. 读书笔记--Spring in Action 目录

    1.Spring之旅 1.1 简化java 开发 1.1.1 激发pojo 的潜能 1.1.2 依赖注入1.1.3 应用切面1.1.4 使用模板消除样板式代码1.2 容纳你的bean1.2.1 与应用 ...

  8. php用mysql方式连接数据库出现Deprecated报错

    以上是用php5.5 连接mysql数据库时报的错. 于是我用php5.4 连接正常没有报错. 这与mysql版本无关系,php 5.x版本,如5.2.5.3.5.4.5.5,怕跟不上时代,新的服务器 ...

  9. day18 15.自定义连接池

    我们写的是连接池吗?Connection对象绝对不能关.现在写的玩意不是连接池.因为现在讲的是JDBC,连接池也是JDBC里面的,人家那是SUN公司定义的标准.标准,你那不是标准.既然是标准,你做连接 ...

  10. Hibernate_添加联系人练习

    分析: 联系人与客户是多对一,一个客户(公司)有多个联系人,在多的这一方,即LinkMan, 1.LinkMan.java中除自身属性外,还需要 2.在hbm.xml文件中,加上 意思是建立一个外键用 ...