关于互信息(Mutual Information),我有些话要说
两个随机变量的独立性表示两个变量X与Y是否有关系(贝叶斯可证),但是关系的强弱(mutual dependence)是无法表示的,为此我们引入了互信息。
其中 p(x,y) 是 X 和 Y 的联合概率分布函数,而p(x)和p(y)分别是 X 和 Y 的边缘概率分布函数。


此外,互信息是非负的(即 I(X;Y) ≥ 0; 见下文),而且是对称的(即 I(X;Y) = I(Y;X))。
但是很明显,信息量是有随机性的
于是就有了平均互信息
2.平均互信息量的物理含义
(1)观察者站在输出端
(2)观察者站在输入端
(3)观察者站在通信系统总体立场上
3.平均互信息量的性质
(1)对称性
(2)非负性
(3)极值性
(4) 凸函数性
(5)数据处理定理
对于互信息我们可以证明下列等式:
I(X;Y) = H(Y) - H(Y|X)
直观地说,如果把熵 H(Y) 看作一个随机变量不确定度的量度,那么 H(Y|X) 就是 X 没有涉及到的 Y 的部分的不确定度的量度。这就是“在 X 已知之后 Y 的剩余不确定度的量”,于是第一个等式的右边就可以读作“Y的不确定度,减去在 X 已知之后 Y 的剩余不确定度的量”,此式等价于“移除知道 X 后 Y 的不确定度的量”。
这证实了互信息的直观意义为知道其中一个变量提供的另一个的信息量(即不确定度的减少量)。
互信息也可以表示为两个随机变量的边缘分布 X 和 Y 的乘积 p(x) × p(y) 相对于随机变量的联合熵 p(x,y) 的相对熵:

关于互信息(Mutual Information),我有些话要说的更多相关文章
- 互信息(Mutual Information)
本文根据以下参考资料进行整理: 1.维基百科:https://zh.wikipedia.org/wiki/%E4%BA%92%E4%BF%A1%E6%81%AF 2.新浪博客:http://blog. ...
- 论文解读( N2N)《Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization》
论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximiz ...
- 双目立体匹配经典算法之Semi-Global Matching(SGM)概述:匹配代价计算之互信息(Mutual Information,MI)
半全局立体匹配算法Semi-Global Matching,SGM由学者Hirschmüller在2005年所提出1,提出的背景是一方面高效率的局部算法由于所基于的局部窗口视差相同的假设在很多情况 ...
- Mutual information and Normalized Mutual information 互信息和标准化互信息
实验室最近用到nmi( Normalized Mutual information )评价聚类效果,在网上找了一下这个算法的实现,发现满意的不多. 浙江大学蔡登教授有一个,http://www.zju ...
- 泡泡一分钟:Robust and Fast 3D Scan Alignment Using Mutual Information
Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/ ...
- Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Image Processing and Analysis_15_Image Registration:Multi-modal volume registration by maximization of mutual information——1996
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- Mutual Information
Mutal Information, MI, 中文名称:互信息. 用于描述两个概率分布的相似/相关程度. 常用于衡量两个不同聚类算法在同一个数据集的聚类结果的相似性/共享的信息量. 给定两种聚类结果\ ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- 论文解读(GMI)《Graph Representation Learning via Graphical Mutual Information Maximization》2
Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang ...
随机推荐
- RocketMQ(消息重发、重复消费、事务、消息模式)
分布式开放消息系统(RocketMQ)的原理与实践 RocketMQ基础:https://github.com/apache/rocketmq/tree/rocketmq-all-4.5.1/docs ...
- 如何更优雅地对接第三方API
本文所有示例完整代码地址:https://github.com/yu-linfeng/BlogRepositories/tree/master/repositories/third 我们在日常开发过程 ...
- Python_全局变量的定义
1.在my套件下新建一个关键字systemkey并进行脚本的编写:创建一个${var1}变量,并赋值为aaaaaaaaaa Set Global Variable ${var1} ...
- uniapp安卓ios百度人脸识别、活体检测、人脸采集APP原生插件
插件亮点 1 支持安卓平板(横竖屏均可),苹果的iPad.2 颜色图片均可更换. 特别提醒 此插件包含 android 端和 iOS 端,考虑到有些同学只做其中一个端的 app,特意分为 2 个插件, ...
- Jquery为动态添加的元素添加事件
$("tbody").on("click","button", function() { var text = $(this).parent ...
- cocos2dx Vec2
//SE是坐标重叠部分 // returns true if segment A-B intersects with segment C-D. S->E is the overlap part ...
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
- 【题解】Leyni的汽车比赛
[题解]Leyni的汽车比赛 HRBUST - 1404 思维题?居然被我凑出来了 这种图论题先设这样一个状态 \[ ans(i,j,f) \] 表示从i到j,最多使用f个交通工具的最短路 转移的话, ...
- 大数据学习之路-hdfs
1.什么是hadoop hadoop中有3个核心组件: 分布式文件系统:HDFS —— 实现将文件分布式存储在很多的服务器上 分布式运算编程框架:MAPREDUCE —— 实现在很多机器上分布式并行运 ...
- Mybatis入门程序编写
执行原理 入门程序编写 1.pom.xml 文件 <dependencies> <dependency> <groupId>mysql</groupId> ...