图解Python深拷贝和浅拷贝
Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果。
下面本文就通过简单的例子介绍一下这些概念之间的差别。
对象赋值
直接看一段代码:
will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = will
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber] will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
代码的输出为:

下面来分析一下这段代码:
- 首先,创建了一个名为will的变量,这个变量指向一个list对象,从第一张图中可以看到所有对象的地址(每次运行,结果可能不同)
- 然后,通过will变量对wilber变量进行赋值,那么wilber变量将指向will变量对应的对象(内存地址),也就是说"wilber is will","wilber[i] is will[i]"
- 可以理解为,Python中,对象的赋值都是进行对象引用(内存地址)传递
- 第三张图中,由于will和wilber指向同一个对象,所以对will的任何修改都会体现在wilber上
- 这里需要注意的一点是,str是不可变类型,所以当修改的时候会替换旧的对象,产生一个新的地址39758496

浅拷贝
下面就来看看浅拷贝的结果:
import copy will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = copy.copy(will) print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
代码结果为:

分析一下这段代码:
- 首先,依然使用一个will变量,指向一个list类型的对象
- 然后,通过copy模块里面的浅拷贝函数copy(),对will指向的对象进行浅拷贝,然后浅拷贝生成的新对象赋值给wilber变量
- 浅拷贝会创建一个新的对象,这个例子中"wilber is not will"
- 但是,对于对象中的元素,浅拷贝就只会使用原始元素的引用(内存地址),也就是说"wilber[i] is will[i]"
- 当对will进行修改的时候
- 由于list的第一个元素是不可变类型,所以will对应的list的第一个元素会使用一个新的对象39758496
- 但是list的第三个元素是一个可不类型,修改操作不会产生新的对象,所以will的修改结果会相应的反应到wilber上

总结一下,当我们使用下面的操作的时候,会产生浅拷贝的效果:
- 使用切片[:]操作
- 使用工厂函数(如list/dir/set)
- 使用copy模块中的copy()函数
深拷贝
最后来看看深拷贝:
import copy
will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = copy.deepcopy(will) print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber] will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
代码的结果为:

分析一下这段代码:
- 首先,同样使用一个will变量,指向一个list类型的对象
- 然后,通过copy模块里面的深拷贝函数deepcopy(),对will指向的对象进行深拷贝,然后深拷贝生成的新对象赋值给wilber变量
- 跟浅拷贝类似,深拷贝也会创建一个新的对象,这个例子中"wilber is not will"
- 但是,对于对象中的元素,深拷贝都会重新生成一份(有特殊情况,下面会说明),而不是简单的使用原始元素的引用(内存地址)
- 例子中will的第三个元素指向39737304,而wilber的第三个元素是一个全新的对象39773088,也就是说,"wilber[2] is not will[2]"
- 当对will进行修改的时候
- 由于list的第一个元素是不可变类型,所以will对应的list的第一个元素会使用一个新的对象39758496
- 但是list的第三个元素是一个可不类型,修改操作不会产生新的对象,但是由于"wilber[2] is not will[2]",所以will的修改不会影响wilber

拷贝的特殊情况
其实,对于拷贝有一些特殊情况:
- 对于非容器类型(如数字、字符串、和其他'原子'类型的对象)没有拷贝这一说
- 也就是说,对于这些类型,"obj is copy.copy(obj)" 、"obj is copy.deepcopy(obj)"
- 如果元祖变量只包含原子类型对象,则不能深拷贝,看下面的例子

总结
本文介绍了对象的赋值和拷贝,以及它们之间的差异:
- Python中对象的赋值都是进行对象引用(内存地址)传递
- 使用copy.copy(),可以进行对象的浅拷贝,它复制了对象,但对于对象中的元素,依然使用原始的引用.
- 如果需要复制一个容器对象,以及它里面的所有元素(包含元素的子元素),可以使用copy.deepcopy()进行深拷贝
- 对于非容器类型(如数字、字符串、和其他'原子'类型的对象)没有被拷贝一说
- 如果元祖变量只包含原子类型对象,则不能深拷贝,看下面的例子
图解Python深拷贝和浅拷贝的更多相关文章
- python 深拷贝与浅拷贝
浅拷贝的方式有: lst=[1,2,3] (1)直接赋值: lst_cp = lst (2)for循环遍历生成:lst_cp= [i for i in lst] (3)copy模块下,copy.cop ...
- Python深拷贝和浅拷贝
1- Python引用计数[1] 1.1 引用计数机制 引用计数是计算机编程语言中的一种内存管理技术,是指将资源(可以是对象.内存或磁盘空间等等)的被引用次数保存起来,当被引用次数变为零时就将其释放的 ...
- 【python测试开发栈】—理解python深拷贝与浅拷贝的区别
内存的浅拷贝和深拷贝是面试时经常被问到的问题,如果不能理解其本质原理,有可能会答非所问,给面试官留下不好的印象.另外,理解浅拷贝和深拷贝的原理,还可以帮助我们理解Python内存机制.这篇文章将会通过 ...
- Python深拷贝与浅拷贝区别
可变类型 如list.dict等类型,改变容器内的值,容器地址不变. 不可变类型 如元组.字符串,原则上不可改变值.如果要改变对象的值,是将对象指向的地址改变了 浅拷贝 对于可变对象来说,开辟新的内存 ...
- Python 深拷贝和浅拷贝的区别
python的复制,深拷贝和浅拷贝的区别 在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用 ...
- python深拷贝和浅拷贝的区别
首先深拷贝和浅拷贝都是对象的拷贝,都会生成一个看起来相同的对象,他们本质的区别是拷贝出来的对象的地址是否和原对象一样,也就是地址的复制还是值的复制的区别. 什么是可变对象,什么是不可变对象: 可变对象 ...
- Python——深拷贝和浅拷贝
深拷贝.浅拷贝 1. 浅拷贝 浅拷贝是对于一个对象的顶层拷贝 import copy a = [[1, 2], 3] b = copy.copy(a) print(id(a)) print(id(b) ...
- PYTHON 深拷贝,浅拷贝
声明:本篇笔记,模仿与其它博客中的内容 浅拷贝 浅拷贝,在内存中只额外创建第一层数据 import copy n1 = {"k1": "wu", "k ...
- Python 深拷贝和浅拷贝
Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果. 下面本文就通过简单的例子介绍一下这些概念之间的差别. 对象赋值 直接看一段代码: will= ...
随机推荐
- 判断Json字符串返回类型 对象 或者 数组
public enum JSON_TYPE { /** * JSONObject */ JSON_TYPE_OBJECT, /** * JSONArray */ JSON_TYPE_ARRAY, /* ...
- Java设计模式(11)外观模式(Facade模式)
外观模式(Facade)的定义:为子系统中的一组接口提供一个一致的界面. Facade一个典型应用就是数据库JDBC的应用,如下例对数据库的操作: public class DBCompare { C ...
- JAVA多线程笔试题
一.题目内容 二.我的答案 利用了线程池.考虑了超时处理.不知道这样写是否还有其他问题,或者更好更优的解决方案? import java.util.*; import java.util.concur ...
- JQuery之拖拽插件
一直以来,都对JS获取元素的位置感到非常的困惑:一会client.一会offset.一会scroll. 再加上各大浏览器之间的不兼容,唉,搞得哥晕晕乎乎的. 而很多页面效果都要用到这些位置.不得已,得 ...
- Process.StandardOutput
Namespace: System.DiagnosticsAssembly: System (in System.dll) Syntax C# C++ F# VB [BrowsableAt ...
- Qt判断操作系统代码
Qt4的时候是如下宏定义.Qt5,有所不同. #include <QtGlobal> ... #ifdef Q_OS_MAC // mac #endif #ifdef Q_OS_LIN ...
- android设置主mic/副mic录音
//添加MIC设置参数 /hal/audio_extn/audio_extn.c @@ -75,6 +75,7 @@ struct audio_extn_module { bool ras_enabl ...
- 第三百三十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—Scrapy启动文件的配置—xpath表达式
第三百三十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—Scrapy启动文件的配置—xpath表达式 我们自定义一个main.py来作为启动文件 main.py #!/usr/bin/en ...
- Java如何获取正在运行的线程的Id?
在Java编程中,如何获取正在运行的线程的Id? 以下示例演示如何使用getThreadId()方法获取正在运行的线程的Id. package com.yiibai; public class IdT ...
- 7月目标 socket , 一致性哈希算法 ; mongodb分片; 分布式消息队列; 中间件的使用场景
分布式的基础:一致性哈希 路由算法的一致性hash http://www.jiacheo.org/blog/174 http://www.tuicool.com/articles/vQVbmai ...