题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana
by placing one block on the top another to build a tower and climb up to get its favorite food.



The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
of the base and the other dimension was the height. 



They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 



Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 
Source

题意:

把给定的长方体(不限)叠加在一起,叠加的条件是。上面一个长方体的长和宽都比以下长方体的长

和宽短;求这些长方体能叠加的最高的高度.(当中(3,2。1)能够摆放成(3,1,2)、(2,1,3)等).

PS:
每块积木最多有
3 个不同的底面和高度。我们能够把每块积木看成三个不同的积木,
那么n种类型的积木就转化为3
*
n个不同的积木,对这3
* n个积木的长依照从大到小排序;
然后找到一个递减的子序列,使得子序列的高度和最大。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
struct node
{
int l, w, h;
} a[1047];
bool cmp(node a, node b)
{
if(a.l == b.l)
{
return a.w > b.w;
}
return a.l > b.l;
}
int MAX(int a, int b)
{
if(a > b)
return a;
return b;
}
int dp[1047];//dp[i]:以第i块积木为顶的最大高度
int main()
{
int n;
int cas = 0;
while(scanf("%d",&n) && n)
{
//int L, W, H;
int tt[3];
int k = 0;
for(int i = 0; i < n; i++)
{
scanf("%d%d%d",&tt[0],&tt[1],&tt[2]);
sort(tt,tt+3);
a[k].l = tt[0];
a[k].w = tt[1];
a[k].h = tt[2];
k++;
a[k].l = tt[1];
a[k].w = tt[2];
a[k].h = tt[0];
k++;
a[k].l = tt[0];
a[k].w = tt[2];
a[k].h = tt[1];
k++;
}
sort(a,a+k,cmp);
int maxx = 0;
for(int i = 0; i < k; i++)
{
dp[i] = a[i].h;
for(int j = i-1; j >= 0; j--)
{
if(a[j].l>a[i].l && a[j].w>a[i].w)
{
dp[i] = MAX(dp[i], dp[j]+a[i].h);
}
}
if(dp[i] > maxx)
{
maxx = dp[i];
}
}
printf("Case %d: maximum height = %d\n",++cas,maxx);
}
return 0;
}

HDU 1069 Monkey and Banana(最大的单调递减序列啊 dp)的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  3. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  4. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  9. HDU 1069 Monkey and Banana(DP 长方体堆放问题)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  10. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

随机推荐

  1. 用SLF4j/Logback打印日志-3

    在 用SLF4j/Logback打印日志-1 和 用SLF4j/Logback打印日志-2 中分别介绍了Logback记录日志的基本原理并重点介绍了输出源配置.本篇介绍一些性能和技巧性的东西. 性能 ...

  2. iOS:viewController 和 view 的生命周期、不错的代码设计风格

    一.介绍: viwe和viewController的生命周期是最基本的知识,如果很好地理解它们的方法调用的执行顺序,就能很好地设计代码的风格.这篇博客转载自:http://www.cnblogs.co ...

  3. [leetcode]Edit Distance @ Python

    原题地址:https://oj.leetcode.com/problems/edit-distance/ 题意: Given two words word1 and word2, find the m ...

  4. [leetcode]Longest Consecutive Sequence @ Python

    原题地址:https://oj.leetcode.com/problems/longest-consecutive-sequence/ 题意: Given an unsorted array of i ...

  5. winrar5.50去广告教程(仅供学习使用)

    https://blog.csdn.net/EnigmCode/article/details/78328873 第一步:到WinRAR官网www.rarlab.com下载自己需要的版本,我这里选择C ...

  6. set练习

    #include <iostream> #include <set> #include <vector> using namespace std; int main ...

  7. struts2 18拦截器详解(九)

    ScopedModelDrivenInterceptor 该拦截器处于defaultStack第八的位置,其主要功能是从指定的作用域内检索相应的model设置到Action中,该类中有三个相关的属性: ...

  8. 【math】梯度下降法(梯度下降法,牛顿法,高斯牛顿法,Levenberg-Marquardt算法)

    原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子 ...

  9. 如何检查显卡类型,DirectX和OpenGL的版本

    How To: Check the graphics card type and OpenGL version From: http://support.esri.com/technical-arti ...

  10. 大量带BPM的跑步歌曲/跑步音乐下载

    20150110停止更新告知:不知不觉本帖更新有近半年了.从最开始跑步已经四年多,一直是听着音乐跑的,音乐支持.陪伴.丰富着我的跑步之旅.直到上个月因一次觉得音乐吵,我开始有意地摘掉耳机去跑步,并开始 ...