基于matplotlib的数据可视化 - 柱状图bar
柱状图bar
柱状图常用表现形式为:
plt.bar(水平坐标数组,高度数组,宽度比例,ec=勾边色,c=填充色,label=图例标签)
注:当高度值为负数时,柱形向下
1 语法
bar(*args, **kwargs)
Call signatures::
bar(x, height, *, align='center', **kwargs)
bar(x, height, width, *, align='center', **kwargs)
bar(x, height, width, bottom, *, align='center', **kwargs)
参数
x : sequence of scalars;bar的条形坐标
height : scalar or sequence of scalars;bar的高度
width : scalar or array-like, optional;bar的宽度,默认值0.8
bottom : scalar or array-like, optional;bar的 y 轴方向的基坐标
align : {'center', 'edge'}, optional, default: 'center',``align='edge'``.;与x坐标对其方式
center - bar的每条形图中心位于X值位置
edge - bar的每条形图的左边与X值对齐
如果想实现右边界对齐,可以align = ‘edge’,同时将宽度设置为负数即可
color : scalar or array-like, optional;bar faces颜色
edgecolor : scalar or array-like, optional;bar edges颜色
linewidth : scalar or array-like, optional;bar边缘线宽,若为0,则不绘制边
tick_label : string or array-like, optional;bar的刻度标签,Default: None (Use default numeric labels.)
xerr, yerr : scalar or array-like of shape(N,) or shape(2,N), optional;若非None,则在bar端面处添加水平或垂直误差条,其值为+/- sizes的相对误差,如下图所示
当然也可以通过参数进行控制正负误差,
scalar - 所有bar具有 +/- values
shape(N,) - 每一个bar +/- values
shape(2,N) - 每一个bar 都具有单独的 - and + values,lower errors 包含在 First row,upper errors 位于 second row
None - 没有误差项(默认)
ecolor : scalar or array-like, optional, default: 'black';误差线条的颜色
capsize : scalar, optional;误差条的长度,
log : bool, optional, default: False,若True,设置 y 轴为 log 刻度
orientation : {'vertical', 'horizontal'}, optional;Default: 'vertical',*This is for internal use only.* Please use `barh` for horizontal bar plots.
2 示例
import numpy as np import matplotlib.pyplot as plt n = 12 x = np.arange(n) y1 = (1 - x / n) * np.random.uniform(0.5, 1.0, n) y2 = (1 - x / n) * np.random.uniform(0.5, 1.0, n) plt.figure('Bar', facecolor='lightgray') plt.title('Bar', fontsize=20) plt.xlabel('x', fontsize=14) plt.ylabel('y', fontsize=14) plt.xticks(x, x + 1) plt.tick_params(labelsize=10) plt.grid(axis='y', linestyle=':') # 绘制bar plt.bar(x, y1, 0.9, ec='white', fc='dodgerblue', label='Sapltle 1' ) # ec edgecolor; fc facecolor # 绘制bar值 for _x, _y in zip(x, y1): plt.text(_x, _y, '%.2f' % _y, ha='center', va='bottom', size=8 ) plt.bar(x, -y2, 0.9, ec='white', fc='dodgerblue', alpha=0.5, label='Sample 2',yerr = x*0.01) for _x, _y in zip(x, y2): plt.text(_x, -_y, '%.2f' % _y, ha='center', va='top', size=8) plt.legend() plt.show()
3 help(plt.bar)
Help on function bar in module matplotlib.pyplot: bar(*args, **kwargs) Make a bar plot. Call signatures:: bar(x, height, *, align='center', **kwargs) bar(x, height, width, *, align='center', **kwargs) bar(x, height, width, bottom, *, align='center', **kwargs) The bars are positioned at *x* with the given *align* ment. Their dimensions are given by *width* and *height*. The vertical baseline is *bottom* (default 0). Each of *x*, *height*, *width*, and *bottom* may either be a scalar applying to all bars, or it may be a sequence of length N providing a separate value for each bar. Parameters ---------- x : sequence of scalars The x coordinates of the bars. See also *align* for the alignment of the bars to the coordinates. height : scalar or sequence of scalars The height(s) of the bars. width : scalar or array-like, optional The width(s) of the bars (default: 0.8). bottom : scalar or array-like, optional The y coordinate(s) of the bars bases (default: 0). align : {'center', 'edge'}, optional, default: 'center' Alignment of the bars to the *x* coordinates: - 'center': Center the base on the *x* positions. - 'edge': Align the left edges of the bars with the *x* positions. To align the bars on the right edge pass a negative *width* and ``align='edge'``. Returns ------- container : `.BarContainer` Container with all the bars and optionally errorbars. Other Parameters ---------------- color : scalar or array-like, optional The colors of the bar faces. edgecolor : scalar or array-like, optional The colors of the bar edges. linewidth : scalar or array-like, optional Width of the bar edge(s). If 0, don't draw edges. tick_label : string or array-like, optional The tick labels of the bars. Default: None (Use default numeric labels.) xerr, yerr : scalar or array-like of shape(N,) or shape(2,N), optional If not *None*, add horizontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the data: - scalar: symmetric +/- values for all bars - shape(N,): symmetric +/- values for each bar - shape(2,N): Separate - and + values for each bar. First row contains the lower errors, the second row contains the upper errors. - *None*: No errorbar. (Default) See :ref:`sphx_glr_gallery_statistics_errorbar_features.py` for an example on the usage of ``xerr`` and ``yerr``. ecolor : scalar or array-like, optional, default: 'black' The line color of the errorbars. capsize : scalar, optional The length of the error bar caps in points. Default: None, which will take the value from :rc:`errorbar.capsize`. error_kw : dict, optional Dictionary of kwargs to be passed to the `~.Axes.errorbar` method. Values of *ecolor* or *capsize* defined here take precedence over the independent kwargs. log : bool, optional, default: False If *True*, set the y-axis to be log scale. orientation : {'vertical', 'horizontal'}, optional *This is for internal use only.* Please use `barh` for horizontal bar plots. Default: 'vertical'. See also -------- barh: Plot a horizontal bar plot. Notes ----- The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts, or candlestick plots. Detail: *xerr* and *yerr* are passed directly to :meth:`errorbar`, so they can also have shape 2xN for independent specification of lower and upper errors. Other optional kwargs: agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha: float or None animated: bool antialiased or aa: bool or None capstyle: ['butt' | 'round' | 'projecting'] clip_box: a `.Bbox` instance clip_on: bool clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None] color: matplotlib color spec contains: a callable function edgecolor or ec: mpl color spec, None, 'none', or 'auto' facecolor or fc: mpl color spec, or None for default, or 'none' for no color figure: a `.Figure` instance fill: bool gid: an id string hatch: ['/' | '\\' | '|' | '-' | '+' | 'x' | 'o' | 'O' | '.' | '*'] joinstyle: ['miter' | 'round' | 'bevel'] label: object linestyle or ls: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``] linewidth or lw: float or None for default path_effects: `.AbstractPathEffect` picker: [None | bool | float | callable] rasterized: bool or None sketch_params: (scale: float, length: float, randomness: float) snap: bool or None transform: `.Transform` url: a url string visible: bool zorder: float .. note:: In addition to the above described arguments, this function can take a **data** keyword argument. If such a **data** argument is given, the following arguments are replaced by **data[<arg>]**: * All arguments with the following names: 'bottom', 'color', 'ecolor', 'edgecolor', 'height', 'left', 'linewidth', 'tick_label', 'width', 'x', 'xerr', 'y', 'yerr'. * All positional arguments.
基于matplotlib的数据可视化 - 柱状图bar的更多相关文章
- 基于matplotlib的数据可视化 - 笔记
1 基本绘图 在plot()函数中只有x,y两个量时. import numpy as np import matplotlib.pyplot as plt # 生成曲线上各个点的x,y坐标,然后用一 ...
- 基于matplotlib的数据可视化 - 饼状图pie
绘制饼状图的基本语法 创建数组 x 的饼图,每个楔形的面积由 x / sum(x) 决定: 若 sum(x) < 1,则 x 数组不会被标准化,x 值即为楔形区域面积占比.注意,该种情况会出现 ...
- 基于matplotlib的数据可视化 - 热图imshow
热图: Display an image on the axes. 可以用来比较两个矩阵的相似程度 mp.imshow(z, cmap=颜色映射,origin=垂直轴向) imshow( X, cma ...
- 基于matplotlib的数据可视化 - 等高线 contour 与 contourf
contour 与contourf 是绘制等高线的利器. contour - 绘制等高线 contourf - 填充等高线 两个的返回值值是一样的(return values are the sam ...
- 基于matplotlib的数据可视化 -
matplotlib.pyplot(as mp or as plt)提供基于python语言的绘图函数 引用方式: import matplotlib.pyplot as mp / as plt 本章 ...
- 基于matplotlib的数据可视化 - 三维曲面图gca
1 语法 ax = plt.gca(projection='3d')ax.plot_surface(x,y,z,rstride=行步距,cstride=列步距,cmap=颜色映射) gca(**kwa ...
- 基于matplotlib的数据可视化(图形填充fill fill_between) - 笔记(二)
区域填充函数有 fill(*args, **kwargs) 和fill_between() 1 绘制填充多边形fill() 1.1 语法结构 fill(*args, **kwargs) args - ...
- matplotlib实现数据可视化
一篇matplotlib库的学习博文.matplotlib对于数据可视化非常重要,它完全封装了MatLab的所有API,在python的环境下和Python的语法一起使用更是相得益彰. 一.库的安装和 ...
- 【Matplotlib】数据可视化实例分析
数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...
随机推荐
- opencv直方图拉伸
1.首先计算出一幅图像的直方图 //计算直方图 cv::MatND ImageHist::getHist(const cv::Mat &image){ cv::Mat im; if(image ...
- ASP入门(七)-Response小案例
我们通过ASP来创建一个年月日的选择框,年份从1950到2000年,如果手动输入HTML代码,其中的<option>列表项目要写94个 (51年 + 12月 + 31天),很是繁琐. 代码 ...
- iOS 真机上图标不显示
今天在调试时发现模拟器上图标显示了.但真机上测试时发现图标不显示. 解决办法 57*57 的图标然后命名为: Icon.png 这样显示就正常了. 参考资料:http://www.cnblogs.c ...
- Hadoop2.7.4 在 Windows 10(64位) 详细配置
网上查询资料,实际配置后整理记录. 一.下载安装配置 1.8.0 以上版本 java 环境 完成后,使用 java -version 命令查看是否成功. 二.下载 hadoop-2.7.4.tar.g ...
- 1050: 贝贝的ISBN号码(isbn)
#include <iostream> #include <iomanip> #include <cstdlib> #include <string> ...
- JAVA统计中文的个数
尝试了一下 不错~ /** * 获取字符串的长度,中文占一个字符,英文数字占半个字符 * * @param value 指定的字符串 * @return 字符串的长度 */ public static ...
- Android学习笔记十:异步处理
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/7520700.html 一:基础概念 UI线程:当Android程序第一次启动时,Android会同时启动一条主 ...
- V-rep学习笔记:机器人路径规划1
Motion Planning Library V-REP 从3.3.0开始,使用运动规划库OMPL作为插件,通过调用API的方式代替以前的方法进行运动规划(The old path/motion ...
- SSM框架中,配置数据库连接的问题
MySQL数据库版本是8.0.11. 要用驱动:com.mysql.cj.jdbc.Driver 最主要的是数据库的连接url. 搞了半天才把问题搞明白: 数据库url后面要加上参数: jdbc:my ...
- Dubbo框架探讨(转)
1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需 ...