poj 2385 Apple Catching 基础dp
Description
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int dp[][][];
int a[];
int main()
{
int x,y,z,i,t;
while(~scanf("%d%d",&x,&y))
{
for(i=;i<=x;i++)
scanf("%d",&a[i]);
for(i=;i<;i++)
for(t=;t<;t++)
for(int j=;j<;j++)
dp[i][t][j]=-inf;
dp[][][]=;
//dp[0][1][2]=0;
memset(dp,,sizeof(dp));
for(i=;i<=x;i++)
{
for(t=;t<=y;t++)
for(int j=;j<=;j++)
{
dp[i][t][j]=max(dp[i][t][j],dp[i-][t][j]);
if(dp[i-][t][j]!=-inf)
{
if(a[i]!=j&&t!=y)
dp[i][t+][a[i]]=max(dp[i][t+][a[i]],dp[i-][t][j]+);
else if(a[i]==j)
dp[i][t][a[i]]=max(dp[i][t][a[i]],dp[i-][t][j]+);
}
}
}
int maxx=;
for(i=;i<=y;i++)
for(t=;t<=;t++)
maxx=max(maxx,dp[x][i][t]);
printf("%d\n",maxx);
}
return ;
}
poj 2385 Apple Catching 基础dp的更多相关文章
- POJ 2385 Apple Catching【DP】
题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...
- POJ 2385 Apple Catching ( 经典DP )
题意 : 有两颗苹果树,在 1~T 的时间内会有两颗中的其中一颗落下一颗苹果,一头奶牛想要获取最多的苹果,但是它能够在树间转移的次数为 W 且奶牛一开始是在第一颗树下,请编程算出最多的奶牛获得的苹果数 ...
- POJ - 2385 Apple Catching (dp)
题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...
- 【POJ】2385 Apple Catching(dp)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13447 Accepted: 6549 D ...
- poj 2385 Apple Catching(dp)
Description It and ) in his field, each full of apples. Bessie cannot reach the apples when they are ...
- poj 2385 Apple Catching(记录结果再利用的动态规划)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时 ...
- POJ 2385 Apple Catching(01背包)
01背包的基础上增加一个维度表示当前在的树的哪一边. #include<cstdio> #include<iostream> #include<string> #i ...
- POJ 2385 Apple Catching
比起之前一直在刷的背包题,这道题可以算是最纯粹的dp了,写下简单题解. 题意是说cows在1树和2树下来回移动取苹果,有移动次数限制,问最后能拿到的最多苹果数,含有最优子结构性质,大致的状态转移也不难 ...
- 动态规划:POJ No 2385 Apple Catching
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> ...
随机推荐
- Spark2.x学习笔记:Spark SQL的SQL
Spark SQL所支持的SQL语法 select [distinct] [column names]|[wildcard] from tableName [join clause tableName ...
- 蒙特卡洛模拟(Monte Carlo simulation)
1.蒙特卡罗模拟简介 蒙特卡罗模拟,也叫统计模拟,这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的,其基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事 ...
- [LintCode] 394. Coins in a Line_ Medium tag:Dynamic Programming_博弈
Description There are n coins in a line. Two players take turns to take one or two coins from right ...
- DataTable转换成IList 【转载】
链接:http://www.cnblogs.com/hlxs/archive/2011/05/09/2087976.html#2738813 留着学习 using System; using Syst ...
- Apache-Shiro介绍
Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.使用Shiro的易于理解的API,您可以快速.轻松地获得任何应用程序,从最小的移动应用程序到最大的网络 ...
- Bootstrap学习笔记-响应式布局原理
响应式布局的原理就是利用css3中@media媒体来实现的 <html> <head> <meta charset="utf-8"> <t ...
- 【Java】系统漏洞:关于用户登录后操作的注意事项
项目背景: SpringMVC + Mybatis + MySql数据库(javaWeb项目开发) 相关模块:登录,个人详细信息修改,订单详情查询 相关漏洞介绍: 1.登录的验证码:登录的验证码一定 ...
- 【GISER && Painter】矢量切片(Vector tile)
说明:本月的主要工作都是围绕制作矢量切片这一个核心问题进行的,所以2月的主题就以这个问题为主,目前分支出来的一些内容主要包括了TMS(Tile map service),OpenLayers3中的Pr ...
- volatile的语义与实现
1.volatile关键字的两层语义 一旦一个共享变量(类的成员变量.类的静态成员变量)被volatile修饰之后,那么就具备了两层语义: 1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修 ...
- Zookeeper使用实例——分布式共享锁
前一讲中我们知道,Zookeeper通过维护一个分布式目录数据结构,实现分布式协调服务.本文主要介绍利用Zookeeper有序目录的创建和删除,实现分布式共享锁. 举个例子,性能管理系统中,告警规则只 ...