题目大意:有3个骰子,各有k1,k2,k3个面,面值为1~ki。还有一个计数器,初始值为0,统计所有的面值和。每次同时置这三个骰子,如果第一个骰子的朝上的值为a、第二个值为b、第三个值为c,那么将计数器置为零。直到计数器的值大于n时结束,求次数的期望值。

题目分析:这道题的状态转移方程不难写。定义状态dp(i)表示计数器值为 i 时还可以置几次,另外定义pk表示一次置出的3个骰子之和为k的概率,p0表示置出a、b、c的概率。则状态转移方程为:dp(i)= ∑pk*dp(i+k)+p0*dp(0)+1  <1>。到这儿就不知道怎么干了,查了下题解:定义dp(i)=A(i)*dp(0)+B(i),并将其代入<1>,得到A(i)= p0+∑pk*A(i+k),B(i)=1+ ∑pk*B(i+k)。那么只需要通过递推得到A(0)和B(0),就可以解得dp(0)=(1-A(0))/B(0)。

代码如下:

# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; int n,a,b,c;
int k1,k2,k3;
double A[600],B[600];
double p[20]; void init()
{
memset(p,0,sizeof(p));
for(int i=1;i<=k1;++i)
for(int j=1;j<=k2;++j)
for(int k=1;k<=k3;++k)
if(i!=a||j!=b||k!=c)
p[i+j+k]+=1.0/k1/k2/k3;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
init();
double p0=1.0/k1/k2/k3;
memset(A,0,sizeof(A));
memset(B,0,sizeof(B));
for(int i=n;i>=0;--i){
A[i]=p0;
B[i]=1;
for(int j=1;j<=k1+k2+k3;++j){
A[i]+=p[j]*A[i+j];
B[i]+=p[j]*B[i+j];
}
}
printf("%.16lf\n",B[0]/(1-A[0]));
}
return 0;
}

  

ZOJ-3329 One Person Game (有环期望问题)的更多相关文章

  1. ZOJ 3329 One Person Game 带环的概率DP

    每次都和e[0]有关系 通过方程消去环 dp[i] = sigma(dp[i+k]*p)+dp[0]*p+1 dp[i] = a[i]*dp[0]+b[i] dp[i] = sigma(p*(a[i+ ...

  2. ZOJ 3329 One Person Game 概率DP 期望 难度:2

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754 本题分数为0的概率不确定,所以不能从0这端出发. 设E[i]为到达成功所 ...

  3. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  4. ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...

  5. ZOJ 3329 One Person Game (经典概率dp+有环方程求解)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki ...

  6. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

  7. zoj 3329 One Person Game (有环 的 概率dp)

    题目链接 这个题看的别人的思路,自己根本想不出来这种设方程的思路. 题意: 有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当 ...

  8. ZOJ 3329 One Person Game 【概率DP,求期望】

    题意:有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当分数大于n时结束.求游戏的期望步数.初始分数为0 设dp[i]表示达到 ...

  9. One Person Game ZOJ - 3329(期望dp, 数学)

    There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. ...

  10. ZOJ 3329 期望DP

    题目大意: 给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望 我们在此令dp[]数组记录从当前数 ...

随机推荐

  1. 线程属性pthread_attr_t简介

    本文编辑整理自: http://hi.baidu.com/7828058/blog/item/256e16decd1a385e94ee3784.html http://www.ibm.com/deve ...

  2. Python Web学习笔记之TCP/IP协议原理与介绍

    HTTP.FTP.SMTP.Telnet等等协议,哦!那个HTTP协议啊就是访问网页用的那个协议啊然后那个······其实······你懂得,我们应该从实际来了解他,理解网络协议的作用与功能,然后再从 ...

  3. P4281 [AHOI2008]紧急集合 / 聚会

    P4281 [AHOI2008]紧急集合 / 聚会 lca 题意:求3个点的lca,以及3个点与lca的距离之和. 性质:设点q1,q2,q3 两点之间的lca t1=lca(q1,q2) t2=lc ...

  4. MySQL新建用户保存的时报错:The MySQL server is running with the --skip-grant-tables option so it cannot execute this statement

    又是这种错, 以前没遇过, 没办法, 直接google. 下面看解决办法: 登录mysql, 当然了如果您登录不上(密码错误情况), 直接扔这个属性进去my.cnf配置文件skip-grant-tab ...

  5. Python3基础 help 查看内置函数说明

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  6. B-树 B+树 B*树

    区分B树,B-树 有的文章说二叉查找树(Binary Search Tree,BST)就是B树,这个我总结来说是不对的 B树和B-树是同一种树,只不过英语中B-tree被中国人翻译成了B-树,让人以为 ...

  7. Luogu P1314 聪明的质监员 二分答案

    题目链接 Solution 这个范围不是二分就是结论题就是数学题... 然后再看一会差不多就可以看出来有单调性所以就可以确定二分的解法了 二分那个$W$,用前缀和$O(n+m)$的时间来求出对答案的贡 ...

  8. Sass常用写法

    Sass使用变量,变量以$开头 $bgcolor:#f40; background-color:$bgcolor; 如果变量需要嵌套在字符串当中,就需要写在#{}之中 $direction:left; ...

  9. [TODO]The way to Go(9): 基本类型和运算符

    参考: Github: Go Github: The way to Go 基本类型和运算符 表达式是一种特定的类型的值,它可以由其它的值以及运算符组合而成. 每个类型都定义了可以和自己结合的运算符集合 ...

  10. SqlParameter 参数化模糊查询

    sql += " and a.f_fullName like N'%'+@fullName+'%'";