(转)Elasticsearch分析聚合
Elasticsearch不仅仅适合做全文检索,分析聚合功能也很好用。下面通过实例来学习。
一、准备数据
{"index":{ "_index": "books", "_type": "IT", "_id": "1" }}
{"id":"1","title":"Java编程思想","language":"java","author":"Bruce Eckel","price":70.20,"year": 2007,"description":"Java学习必读经典,殿堂级著作!赢得了全球程序员的广泛赞誉。"}
{"index":{ "_index": "books", "_type": "IT", "_id": "2" }}
{"id":"2","title":"Java程序性能优化","language":"java","author":"葛一鸣","price":46.50,"year": 2012,"description":"让你的Java程序更快、更稳定。深入剖析软件设计层面、代码层面、JVM虚拟机层面的优化方法"}
{"index":{ "_index": "books", "_type": "IT", "_id": "3" }}
{"id":"3","title":"Python科学计算","language":"python","author":"张若愚","price":81.40,"year": 2016,"description":"零基础学python,光盘中作者独家整合开发winPython运行环境,涵盖了Python各个扩展库"}
{"index":{ "_index": "books", "_type": "IT", "_id": "4" }}
{"id":"4","title":"Python基础教程","language":"python","author":"张若愚","price":54.50,"year": 2014,"description":"经典的Python入门教程,层次鲜明,结构严谨,内容翔实"}
{"index":{ "_index": "books", "_type": "IT", "_id": "5" }}
{"id":"5","title":"JavaScript高级程序设计","language":"javascript","author":"Nicholas C.Zakas","price":66.40,"year":2012,"description":"JavaScript技术经典名著"}
准备5条数据,保存着books.json中,批量导入:
curl -XPOST "http://localhost:9200/_bulk?pretty" --data-binary @books.json
二、Group By分组统计
执行命令:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '{
"size": 0,
"aggs": {
"per_count": {
"terms": {
"field": "language"
}
}
}
}'
统计结果:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"per_count" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "java",
"doc_count" : 2
}, {
"key" : "python",
"doc_count" : 2
}, {
"key" : "javascript",
"doc_count" : 1
} ]
}
}
}
按编程语言分类,java类2本,python类1本,javascript类1本。
三、Max最大值
执行命令,统计price最大的:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '{
"size": 0,
"aggs": {
"max_price": {
"max": {
"field": "price"
}
}
}
}'
返回结果:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"max_price" : {
"value" : 81.4
}
}
}
四、Min最小值
求价格最便宜的那本:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '{
"size": 0,
"aggs": {
"max_price": {
"max": {
"field": "price"
}
}
}
}'
统计结果:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"max_price" : {
"value" : 81.4
}
}
}
五、Average平均值
分组统计并求5本书的平均价格:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '{
"size": 0,
"aggs": {
"per_count": {
"terms": {
"field": "language"
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
'
返回结果:
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"per_count" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "java",
"doc_count" : 2,
"avg_price" : {
"value" : 58.35
}
}, {
"key" : "python",
"doc_count" : 2,
"avg_price" : {
"value" : 67.95
}
}, {
"key" : "javascript",
"doc_count" : 1,
"avg_price" : {
"value" : 66.4
}
} ]
}
}
}
六、Sum求和
求5本书总价:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '
{
"size": 0,
"aggs": {
"sum_price": {
"sum": {
"field": "price"
}
}
}
}'
返回结果:
{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"sum_price" : {
"value" : 319.0
}
}
}
七、基本统计
基本统计会返回字段的最大值、最小值、平均值、求和:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '{
"size": 0,
"aggs": {
"grades_stats": {
"stats": {
"field": "price"
}
}
}
}'
返回结果:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"grades_stats" : {
"count" : 5,
"min" : 46.5,
"max" : 81.4,
"avg" : 63.8,
"sum" : 319.0
}
}
}
八、高级统计
高级统计还会返回方差、标准差等:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d'
{
"size": 0,
"aggs": {
"grades_stats": {
"extended_stats": {
"field": "price"
}
}
}
}
'
统计结果:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"grades_stats" : {
"count" : 5,
"min" : 46.5,
"max" : 81.4,
"avg" : 63.8,
"sum" : 319.0,
"sum_of_squares" : 21095.46,
"variance" : 148.65199999999967,
"std_deviation" : 12.19229264740638,
"std_deviation_bounds" : {
"upper" : 88.18458529481276,
"lower" : 39.41541470518724
}
}
}
}
九、百分比统计
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '
{
"size": 0,
"aggs": {
"load_time_outlier": {
"percentiles": {
"field": "year"
}
}
}
}
'
返回结果:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"load_time_outlier" : {
"values" : {
"1.0" : 2007.2,
"5.0" : 2008.0000000000002,
"25.0" : 2012.0,
"50.0" : 2012.0,
"75.0" : 2014.0,
"95.0" : 2015.6000000000001,
"99.0" : 2015.92
}
}
}
}
十、分段统计
统计价格小于50、50-80、大于80的百分比:
curl -XPOST "http://localhost:9200/books/_search?pretty" -d '{
"size": 0,
"aggs": {
"price_ranges": {
"range": {
"field": "price",
"ranges": [{
"to": 50
}, {
"from": 50,
"to": 80
}, {
"from": 80
}]
}
}
}
}
'
返回结果:
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"price_ranges" : {
"buckets" : [ {
"key" : "*-50.0",
"to" : 50.0,
"to_as_string" : "50.0",
"doc_count" : 1
}, {
"key" : "50.0-80.0",
"from" : 50.0,
"from_as_string" : "50.0",
"to" : 80.0,
"to_as_string" : "80.0",
"doc_count" : 3
}, {
"key" : "80.0-*",
"from" : 80.0,
"from_as_string" : "80.0",
"doc_count" : 1
} ]
}
}
}
转自:http://blog.csdn.net/napoay/article/details/53484730
(转)Elasticsearch分析聚合的更多相关文章
- Elasticsearch分析聚合
原文链接:http://blog.csdn.net/napoay/article/details/53484730
- Elasticsearch 之聚合分析入门
本文主要介绍 Elasticsearch 的聚合功能,介绍什么是 Bucket 和 Metric 聚合,以及如何实现嵌套的聚合. 首先来看下聚合(Aggregation): 什么是 Aggregati ...
- Elasticsearch(8) --- 聚合查询(Metric聚合)
Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...
- ElasticSearch实战系列五: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合
Title:ElasticSearch实战系列四: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合 前言 在上上一篇中介绍了ElasticSearch实战系列三: Elas ...
- Elasticsearch系列---聚合查询原理
概要 本篇主要介绍聚合查询的内部原理,正排索引是如何建立的和优化的,fielddata的使用,最后简单介绍了聚合分析时如何选用深度优先和广度优先. 正排索引 聚合查询的内部原理是什么,Elastich ...
- Elasticsearch(9) --- 聚合查询(Bucket聚合)
Elasticsearch(9) --- 聚合查询(Bucket聚合) 上一篇讲了Elasticsearch聚合查询中的Metric聚合:Elasticsearch(8) --- 聚合查询(Metri ...
- [Elasticsearch] ES聚合场景下部分结果数据未返回问题分析
背景 在对ES某个筛选字段聚合查询,类似groupBy操作后,发现该字段新增的数据,聚合结果没有展示出来,但是用户在全文检索新增的筛选数据后,又可以查询出来, 针对该问题进行了相关排查. 排查思路 首 ...
- ElasticSearch 的 聚合(Aggregations)
Elasticsearch有一个功能叫做 聚合(aggregations) ,它允许你在数据上生成复杂的分析统计.它很像SQL中的 GROUP BY 但是功能更强大. Aggregations种类分为 ...
- ES 24 - 如何通过Elasticsearch进行聚合检索 (分组统计)
目录 1 普通聚合分析 1.1 直接聚合统计 1.2 先检索, 再聚合 1.3 扩展: fielddata和keyword的聚合比较 2 嵌套聚合 2.1 先分组, 再聚合统计 2.2 先分组, 再统 ...
随机推荐
- 【Spring Boot&&Spring Cloud系列】提高数据库访问性能
前言 使用关系型数据库的应用系统的性能瓶颈最终还是数据库.随着业务的迅速增长,数据量会不断增大,会逐渐暴露关系型数据库的弱点,性能会大幅度的降低 项目地址:https://github.com/And ...
- webpack4 优化记录
webpack4.0优化那些事儿 一 缩小文件搜索范围 1 include & exclude 1) action 限制编译范围 2) useage module: { rules: [ { ...
- Android Studio 调试系列之分析堆栈调用
Analyze a Stack Trace 方法:Thread.dumpStack() 一 代码中添加Thread.dumpStack() 二 Android Studio查看堆栈log 三 借助A ...
- linux下 php 安装mysql的扩展模块
1.安装mysql-devel包 [root@DBproxy ~]# yum install mysql-devel 注:该包必须在编译php之前安装好,否则在安装php的mysql扩展模块是会碰到各 ...
- 题目1452:搬寝室(dp题目)
题目链接:http://ac.jobdu.com/problem.php?pid=1452 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...
- 23种设计模式之外观模式(Facade)
外观模式是对象的结构模式,要求外部与一个子系统的通信必须通过一个统一的外观对象进行,为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 优点: 1 ...
- Fiddler实现手机的抓包(转载园友小坦克)
Fiddler不但能截获各种浏览器发出的HTTP请求, 也可以截获各种智能手机发出的HTTP/HTTPS请求. Fiddler能捕获IOS设备发出的请求,比如IPhone, IPad, MacBook ...
- Penn Treebank
NLP中常用的PTB语料库,全名Penn Treebank.Penn Treebank是一个项目的名称,项目目的是对语料进行标注,标注内容包括词性标注以及句法分析. 语料来源为:1989年华尔街日报语 ...
- python的for else组合用法
如下代码,输入评论,如果评论中含有敏感词则更换成*号,否则正常输入. li = ["老师", "你好", "333", "4444 ...
- python中的range与xrange
range 也是一种类型(type),它是一个数字的序列(s sequence of numbers),而且是不可变的,通常用在for循环中. class range(stop) class rang ...