ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD
Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Input
Output
Sample Input
12 2
2 3
Sample Output
7
/*/
题意:
给出N和M 输入M个数,找出所有M个数的倍数并且,Mi的倍数小于N,输出所有数的总个数。 如果一个数同时是三个数的倍数
单独记一个数的倍数次数为C(3,1) =3
记两个数的倍数次数为 C(3,2)=3
记三个数的倍数次数为 C(3,3)=1
3-3+1=1,只记一次依次类推 一个数为5个数的倍数
C(5,1)=5
C(5,2)=10
C(5,3)=10
C(5,4)=5
C(5,5)=1
5-10+10-5+1=1 六个数
C(6,1)=6
C(6,2)=15
C(6,3)=20
C(6,4)=15
C(6,5)=6
C(6,6)=1
6-15+20-15+6-1=1
上图:
然后因为数字不超过10个,可以运用枚举子集的思想去做这个题目。
所以用到DFS。
最后有一个地方要注意就是在DFS里面判断积这里,要用GCD,一开始没想到过不了样例。 AC代码:
/*/
#include"map"
#include"cmath"
#include"string"
#include"cstdio"
#include"vector"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
typedef long long LL; LL a[15];
int n,m,cnt;
LL ans,x; LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
} void DFS(int x,LL axb,int num) {
axb=a[x]/gcd(a[x],axb)*axb;
if(num&1) ans+=(n-1)/axb;
else ans-=(n-1)/axb;
// cout<<"now ans is:"<<ans<<endl; //检查
for(int i=x+1; i<cnt; i++)
DFS(i,axb,num+1);
} int main() {
while(~scanf("%d%d",&n,&m)) {
ans=0;
cnt=0;
for(int i=0; i<m; i++) {
scanf("%I64d",&x);
if(x!=0)a[cnt++]=x;
}
for(int i=0; i<cnt; i++){
DFS(i,a[i],1); //用DFS去枚举每种选择的情况。
}
printf("%d\n",ans);
}
return 0;
}
ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD的更多相关文章
- 【数论Day1】 最大公约数(gcd)题目
20170529-3数论_gcd 题解: http://www.cnblogs.com/ljc20020730/p/6919116.html 日期 序号 题目名称 输入文件名 输出文件名 时限 内存 ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程—HDU 5317 RGCDQ (数论)
Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...
- ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄∀ ̄))
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 数论(容斥原理)hdu-4509-The Boss on Mars
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4059 题目大意: 给一个n,求1~n中与n互质的数的4次方的总和. 解题思路: 容斥原理.逆元.公式 ...
- 邝斌带你飞之数论专题--Maximum GCD UVA - 11827
Given the N integers, you have to find the maximum GCD (greatest common divisor) of every possible p ...
- NOIP2018提高组金牌训练营——数论专题
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...
随机推荐
- Error parsing 'file:///media/RHEL_5.5\\ x86_64\\ DVD/Server'
Error parsing 'file:///media/RHEL_5.5\\ x86_64\\ DVD/Server' http://lindows.iteye.com/blog/456637 ht ...
- 浅析配置更快的Eclipse方法
很多人感觉自己的elipse启动比较慢,其实并不是因为装的插件太多或者是导入的项目有点大,而是因为参数的设置不合理导致的.可以在eclipse.ini里面添加-Xloggc:gc.log看看启动的日志 ...
- NBU官方Doc網址https://www.veritas.com/support/en_US/article.DOC5332
NBU(NetBackup) 7.0之後的版本官方文檔鏈接地址: https://www.veritas.com/support/en_US/article.DOC5332
- 提高WPF程序性能的几条建议
这篇博客将介绍一些提高WPF程序的建议(水平有限,如果建议有误,请指正.) 1. 加快WPF程序的启动速度: (1).减少需要显示的元素数量,去除不需要或者冗余的XAML元素代码. (2).使用UI虚 ...
- [Linux] 解压tar.gz文件,解压部分文件
遇到数据库无法查找问题原因,只能找日志,查找日志的时候发现老的日志都被压缩了,只能尝试解压了 数据量比较大,只能在生产解压了,再进行查找 文件名为*.tar.gz,自己博客以前记录过解压方法: h ...
- HR外包系统 - 员工项目 薪资项目 考勤项目 -管理
项目管理-包括员工项目 薪资项目 考勤项目 一 后台总公司定义项目-前台分公司选择项目,定义别名-分公司客户选择员工项目,定义别名 分公司下面-新建薪资类别-薪资类别下面选择要的薪资和考勤项目. 二 ...
- App界面交互设计规范(转)
在上篇<APP界面设计风格>确定下来后,产品经理(兼交互设计)还不用着急将所有的交互稿扔给设计师进行细致的界面设计.在细节设计启动前,拉上设计师和安卓前端开发.ios前端开发一起商议确定设 ...
- Cygwin的安装与配置
去cygwin的官网去下载: 安装: 初次安装 卸载 使用过程中安装新的工具包 参考http://blog.csdn.net/superbinbin1/article/details/10147421 ...
- 如何离线下载Chrome的安装包
打开Chrome官网(自行搜索)点击下载后下载的是联网安装包,这对部分上网不方便的用户造成了一定的麻烦. http://www.google.cn/chrome/browser/desktop/ind ...
- java Clone使用方法详解
java"指针" Java语言的一个优点就是取消了指针的概念,但也导致了许多程序员在编程中常常忽略了对象与引用的区别,本文会试图澄清这一概念.并且由于Java不能 通过 ...
