ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD
Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Input
Output
Sample Input
12 2
2 3
Sample Output
7
/*/
题意:
给出N和M 输入M个数,找出所有M个数的倍数并且,Mi的倍数小于N,输出所有数的总个数。 如果一个数同时是三个数的倍数
单独记一个数的倍数次数为C(3,1) =3
记两个数的倍数次数为 C(3,2)=3
记三个数的倍数次数为 C(3,3)=1
3-3+1=1,只记一次依次类推 一个数为5个数的倍数
C(5,1)=5
C(5,2)=10
C(5,3)=10
C(5,4)=5
C(5,5)=1
5-10+10-5+1=1 六个数
C(6,1)=6
C(6,2)=15
C(6,3)=20
C(6,4)=15
C(6,5)=6
C(6,6)=1
6-15+20-15+6-1=1
上图:
然后因为数字不超过10个,可以运用枚举子集的思想去做这个题目。
所以用到DFS。
最后有一个地方要注意就是在DFS里面判断积这里,要用GCD,一开始没想到过不了样例。 AC代码:
/*/
#include"map"
#include"cmath"
#include"string"
#include"cstdio"
#include"vector"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
typedef long long LL; LL a[15];
int n,m,cnt;
LL ans,x; LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
} void DFS(int x,LL axb,int num) {
axb=a[x]/gcd(a[x],axb)*axb;
if(num&1) ans+=(n-1)/axb;
else ans-=(n-1)/axb;
// cout<<"now ans is:"<<ans<<endl; //检查
for(int i=x+1; i<cnt; i++)
DFS(i,axb,num+1);
} int main() {
while(~scanf("%d%d",&n,&m)) {
ans=0;
cnt=0;
for(int i=0; i<m; i++) {
scanf("%I64d",&x);
if(x!=0)a[cnt++]=x;
}
for(int i=0; i<cnt; i++){
DFS(i,a[i],1); //用DFS去枚举每种选择的情况。
}
printf("%d\n",ans);
}
return 0;
}
ACM: How many integers can you find-数论专题-容斥原理的简单应用+GCD的更多相关文章
- 【数论Day1】 最大公约数(gcd)题目
20170529-3数论_gcd 题解: http://www.cnblogs.com/ljc20020730/p/6919116.html 日期 序号 题目名称 输入文件名 输出文件名 时限 内存 ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程—HDU 5317 RGCDQ (数论)
Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...
- ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄∀ ̄))
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 数论(容斥原理)hdu-4509-The Boss on Mars
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4059 题目大意: 给一个n,求1~n中与n互质的数的4次方的总和. 解题思路: 容斥原理.逆元.公式 ...
- 邝斌带你飞之数论专题--Maximum GCD UVA - 11827
Given the N integers, you have to find the maximum GCD (greatest common divisor) of every possible p ...
- NOIP2018提高组金牌训练营——数论专题
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...
随机推荐
- PHP定时器实现每隔几秒运行一次
php是服务器端脚本了并不像js那样有专业的settimeout函数来定时执行了,但只要浏览器不关闭各阶层是可以做到了,下面一起来看看. 下面写个简单例子来讲解这个方法. <?php ignor ...
- WCF分布式开发必备知识(1):MSMQ消息队列
本章我们来了解下MSMQ的基本概念和开发过程.MSMQ全称MicroSoft Message Queue,微软消息队列,是在多个不同应用之间实现相互通信的一种异步传输模式,相互通信的应用可以分布于同一 ...
- Delphi中线程类TThread实现多线程编程1---构造、析构……
参考:http://www.cnblogs.com/rogee/archive/2010/09/20/1832053.html Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大 ...
- 【Java环境变量的配置问题】
首先是JVM.JRE.JDK三者之间的关系: java的跨平台性依赖于Java虚拟机:jvm(Java Virtual Machine),而jre(Java Runtime Environment,中 ...
- HTML - DOCTYPE
HTML - DOCTYPE HTML 5 doctype <!DOCTYPE html> HTML4.01 Based on SGML. so the browser need the ...
- android 入门-库的生成jar 和引用jar
开发环境 1.eclipse 2.android studio 步骤 1.在eclipse 生成 jar包 2.在android studio 引用 jar包 实现步骤 1.在eclipse 创建一个 ...
- wp8 入门到精通 测量代码执行时间
Stopwatch time = new Stopwatch(); byte[] target = new byte[size]; for (int j = 0; j < size; j++) ...
- Ubuntu下配置samba实现文件夹共享
转自:http://www.cnblogs.com/phinecos/archive/2009/06/06/1497717.html 一. samba的安装: sudo apt-get insall ...
- 解决linux下unzip中文有乱码的问题
xxx.zip 中有中文的文件,在linux下unzip就会有乱码. 解决办法:安装7zip 去http://sourceforge.net/projects/p7zip/files/latest/d ...
- cocos2d-x CCScrollView和CCTableView的使用(转载)
转载请注明来自:Alex Zhou的程序世界,本文链接:http://codingnow.cn/cocos2d-x/1024.html //============================== ...