题目来源: TopCoder
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X。

例如,LCM(2)=2,LCM(4,6)=12,LCM(1,2,3,4,5)=60。
现在给定一个整数N(1<=N<=1000000),需要找到一个整数M,满足M>N,同时LCM(1,2,3,4,...,N-1,N) 整除 LCM(N+1,N+2,....,M-1,M),即LCM(N+1,N+2,....,M-1,M)是LCM(1,2,3,4,...,N-1,N) 的倍数.求最小的M值。
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据一行一个整数N,1<=N<=1000000。
Output
每组数据一行输出,即M的最小值。
Input示例
3
1
2
3
Output示例
2
4

6
lcm是最小公倍数。2个数的最小公倍数代表着什么呢? 其实就是2个数他们的质因子一定有公有部分(有的只有1)。
那么公有部分只需要取一次,其它非公有的都相乘,这个数就是最小公倍数。所以这里就是要找到一个m,使m尽量小,
让m都包含1~n里所有质因子的最高次方,这时候只需要对于每一个质因子,找到x,使x*prime[i](当前质因子) <= n,
然后x乘上最小的一个值后,x > n,这是候这个x就是满足的其中一个值。这是只需要遍历一下所有情况就能得到最小的m。
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<time.h>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1<<30
#define ll unsigned long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MOD 1000000007
using namespace std;
const int MAXN = ;
ll n;
int a[MAXN],cnt,numa[MAXN];
int isnotprime[MAXN],num;
ll prime[MAXN];
void Init()
{
num = ;
memset(isnotprime,,sizeof(isnotprime));
for(int i = ; i <= MAXN - ; i++){
if(!isnotprime[i]){
prime[num++] = i;
}
for(int j = ; j < num && 1LL * i * prime[j] < MAXN; j++){
isnotprime[i*prime[j]] = ;
if(i % prime[j] == )break;
}
}
}
void solve()
{
if(n == ){
cout<<<<endl;
return ;
}
ll ans = ;
for(int i = ; i < num; i++){
if(prime[i] > n)break;
ll ret = ;
while(ret * prime[i] <= n){
ret *= prime[i];
}
for(int j = ; ; j++){
if(ret * j > n){
ret *= j;
break;
}
}
ans = max(ans,ret);
}
cout<<ans<<endl;
}
int main()
{
int t;
scanf("%d",&t);
Init();
while(t--){
scanf("%d",&n);
solve();
}
return ;
}

51nod 1434 理解lcm的更多相关文章

  1. 1434 区间LCM

    1434 区间LCM 基准时间限制:1 秒 空间限制:131072 KB 一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X. 例如,LCM(2 ...

  2. 51nod 1434

    首先可以得出一个性质:LCM(1,2,3,4,...,N-1,N) 中质因子k的出现的次数为t,则有k^t<=n 根据这个性质我们先筛出素数,然后枚举每个质数,求出对应的k和t,然后找出倍数j( ...

  3. 51nod 1012 最小公倍数LCM

    输入2个正整数A,B,求A与B的最小公倍数. 收起   输入 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) 输出 输出A与B的最小公倍数. 输入样例 30 105 输出 ...

  4. 51nod1434 区间LCM

    将n!标准分解.m!/n!必定需要包含n!的分解式.对于每个质数枚举最小的答案,然后总的取最大. #include<cstdio> #include<cstring> #inc ...

  5. 洛谷 UVA11388 GCD LCM

    UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...

  6. NOIP2018提高组金牌训练营——数论专题

    地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...

  7. 潜类别模型(Latent Class Modeling)

    1.潜类别模型概述 潜在类别模型(Latent Class Model, LCM; Lazarsfeld & Henry, 1968)或潜在类别分析(Latent Class Analysis ...

  8. 51nod 1575 Gcd and Lcm

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. ...

  9. 【51nod】2026 Gcd and Lcm

    题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们 ...

随机推荐

  1. POJ1651Multiplication Puzzle[区间DP]

    Multiplication Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8737   Accepted:  ...

  2. u3d_小游戏_拼图_1_生成碎片(非随机)

    http://blog.csdn.net/cube454517408/article/details/7907247  首先是参考此文: main.cs作用:1.大图的拆分 2.判断是否成功 3.对碎 ...

  3. [No000004]在WIN7/8任务栏创建快捷方式

    在XP时代,有一个快速启动栏,创建快捷方式只需要把快捷方式放在“%AppData%\Roaming\Microsoft\Internet Explorer\Quick Launch”文件夹下即可,如果 ...

  4. Func<T,TResult>泛型委托

    描述: 封装一个具有一个参数并返回TResult参数指定的类型值的方法. 语法: public delegate TResult Func<T,TResult>(T arg); 参数类型: ...

  5. avalon.js路由

    之前自己写了一个AJAX加载页面的方法:有时候一个页面里面会分区域加载不同的东西(div,html),但是IE的回退按钮,就失去任何意义了: 这两天研究了一下avalon.js的路由: 需要准备: 1 ...

  6. 纯js代码实现手风琴特效

    我知道现在大多数前端开发人员都在使用jQuery等第三方的库来进行开发,这不仅节约了时间,也让效率大大的提高,并让公司的效益增加,何乐而不为呢? 但是,这也会有一定的缺点,比如jQ比js慢,尤其在大型 ...

  7. python设计模式1:创建型模式

    1.原型模式 如果想根据现有的对象复制出新的对象并进行修改,可以考虑“原型模式”,而无需知道任何创建细节.(有点像写轮眼...你不需要知道它) import copy class Point: __s ...

  8. java的string常用操作

    import java.util.*; public class Demo3 { public static void main(String args[]){ String str = " ...

  9. Android智能指针sp wp详解

    研究Android的时候,经常会遇到sp.wp的东西,网上一搜,原来是android封装了c++中对象回收机制.说明:1. 如果一个类想使用智能指针,那么必须满足下面两个条件:    a. 该类是虚基 ...

  10. C# where用法

    where 子句用于指定类型约束,这些约束可以作为泛型声明中定义的类型参数的变量. 1.接口约束. 例如,可以声明一个泛型类 MyGenericClass,这样,类型参数 T 就可以实现 ICompa ...