Streaming replication slots are a pending feature in PostgreSQL 9.4, as part of the logical changeset extraction feature.

What are they for, what do you need to know, what changes?

What are replication slots?

Streaming replication slots are a new facility introduced in PostgreSQL 9.4. They are a persistent record of the state of a replica that is kept on the master server even when the replica is offline and disconnected.

They aren’t used for physical replication by default, so you’ll only be dealing with them if you enable their use. This post explains what they do, why they’re useful for physical replication, and why they’re necessary for logical replication.

Why slots?

As part of the ongoing work Andres has been doing on log-streaming logical replication, changeset extraction, and bidirectional replication, there’s been the need to better control WAL retention.

As streaming replication currently works, the master doesn’t make any effort to retain extra WAL for a standby that’s fallen behind. If the standby gets too far behind, the master will delete WAL segments the standby still needs to replay, and the standby cannot recover. You get an error like:

ERROR:  requested WAL segment 00000001000000010000002D has already been removed

To prevent this, you are currently expected to configure continuous archiving and provide a restore_command to give the replica access to the archive, or be willing to re-create a standby that falls behind.

A less reliable alternative is to set wal_keep_segments to a “high enough” value to ensure that the replica never falls too far behind – but there’s no real way to guess what is high enough, and the higher the value is set the greater the risk the master will be able to run out of space in pg_xlog. So generally archiving is preferred.

The master could retain WAL for a replica while it’s connected, but as soon as the replica disconnects for any reason the master forgets all about it. As transient disconnects are common, this means there’s not much point in trying to retain WAL just for connected replicas.

We’ve gotten away with this so far because the option of falling back to continuous archiving has been available for when the master discards WAL the replicas still need. When combined with or scripts likeWAL-E, a shared network file system, or a shared host to scp archives to/from, it’s done the job pretty well. It’s a bit confusing for new users, but it works well.

With log streaming logical replication we can’t fall back on continuous archiving anymore, because the master must read WAL and decode it to send the results to the replicas; it can’t just send raw WAL records. Replicas cannot just read raw WAL from the master and extract what they require themselves because only the master has a record of transaction ID statuses, the local oids of objects, etc.

We could just teach the master to run restore_command (something people seem to assume happens anyway) – but that could get very inefficient when many replicas want the same WAL archive. We’d need a caching system and other complexity. It also doesn’t get rid of the need for the admin to manage retention for archived WAL.

Unlike with physical replication, the option of just re-seeding a replica that has fallen too far behind is not acceptable for logical replication. There may be other databases on the replica host that contain their own original data. In the bidirectional replication case, the replica database may also contain newdata not yet replicated to other nodes. So we can’t just write the replica off and make a new pg_basebackupfrom the master or re-rsync it like we do with physcial replication.

The introduction of slots is intended to deal with this issue by giving the master persistent knowledge of the state of replicas, even when they are disconnected. While it was added for logical replication, the concept is useful in physical replication as well, as it lets the master retain as much WAL as is required by all its standbys and no more. There’s no guesswork like there is with wal_keep_segments. There’s no need to set up a separate WAL archiving system and manage retention in it. So long as you have enough space in pg_xlog for the extra WAL, it just works. If a replica disconnects the master can keep WAL for it until it reconnects and replays the WAL.

The downside of this approach is that it adds another way for unbounded WAL growth to fill pg_xlog – when a replica cannot receive or replay WAL fast enough or remains offline for a long time, the master will keep on retaining WAL until pg_xlog fills up and it starts reporting errors to clients. This can already happen on a master with long checkpoint intervals under heavy load, but it’s much easer to trigger with slots as a replica that goes ofline indefinitely will cause pg_xlog to fill up.

While monitoring and adjustment of pg_xlog capacity is already necessary for a busy PostgreSQL server, it is much more so for a server that is using slots to manage WAL retention for replication.

Operational impact

By default, physical replication will not use slots. Nothing changes. You must use WAL archiving on top of streaming to ensure reliable replication.

You can enable the use of replication slots for physical replication with the primary-slotname parameter in recovery.conf. The physical replication slot must already have been created on the master with the pg_create_physical_replication_slot(...) function; see the docs.

When using slots to manage physical replication, WAL archiving is no longer required for replication (though you may wish to retain it for PITR anyway). You don’t need to deal with the difficulties of managing WAL retention amongst multiple replicas that may or may not be online, with replay positions that are not known to the master when offline. You don’t need to manage the space in the archive store.

Instead, you need to keep an eye on space in pg_xlog. WAL retention is managed automatically for you, but you must ensure there’s enough space available.

If a replica is retired from service or unrecoverably lost due to failure of the host, you must manually remove the slot from the master because the master won’t delete any xlog until you do. If you have a system where the master produces xlog rapidly, this may require a lot of pg_xlog space or fairly quick action. A monitoring system like Icinga or Zabbix is strongly recommended.

A replica that is unable to keep up the master must be fixed or retired to prevent the master from running out of xlog space.

With slots you no longer need to monitor the replicas to determine their state, as accurate and up to date information is always available in the pg_replication_slots view. So all you need to do is monitor the master’s pg_xlog space and the status of all replication slots.

Any wal_keep_segments parameter will be respected as a minimum for WAL retention.

So: using slots for physical replication is a trade-off. You don’t need archiving anymore, but you have to monitor the state of the system more closely to avoid disrupting the master.

Future work

To reduce the need for a large pg_xlog space allocation on what could be expensive high-performance storage, in future slots may be extended to support moving WAL to a separate location once it’s no longer required for the master’s own checkpointing.

参考:

http://blog.2ndquadrant.com/postgresql-9-4-slots/

Streaming replication slots in PostgreSQL 9.4的更多相关文章

  1. 配置PostgreSQL Streaming Replication集群

    运行环境: Primary: 192.168.0.11 Standby: 192.168.0.21, 192.168.0.22 OS: CentOS 6.2 PostgreSQL: 9.1.2 版本以 ...

  2. PostgreSQL 9.3 Streaming Replication 状态监控

    postgresql是使用Streaming Replication来实现热备份的,热备份的作用如下: 灾难恢复 高可用性 负载均衡,当你使用Streaming Replication来实现热备份(h ...

  3. PostgreSQL Streaming Replication的FATAL ERROR

    磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面: PostgreSQL集群方案相关索引页     回到顶级页面:PostgreSQL索引页[作者 高健@博客园  luckyjackgao@gm ...

  4. PostgreSQL的streaming replication

    磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面: PostgreSQL集群方案相关索引页     回到顶级页面:PostgreSQL索引页[作者 高健@博客园  luckyjackgao@gm ...

  5. postgresql Streaming Replication监控与注意事项

    一监控Streaming Replication集群 1 pg_stat_replication视图(主库端执行) pid Wal sender process的进程ID usesysid 执行流复制 ...

  6. [笔记] postgresql 流复制(streaming replication)

    基本环境说明: os:FreeBSD 9.3 postgresql version: master:192.168.56.101 standby:192.168.56.102 安装过程略,基于pkg包 ...

  7. PostgreSQL 9.3发布

    9月9日,PostgreSQL全球开发组宣布了9.3版发布的消息.从2010年9.0版开始,PostgreSQL已经连续四个版本稳定地按时在每年9月中旬发布,从一个侧面也显示了开发团队的强大实力. 9 ...

  8. PostgreSQL Replication之第十四章 扩展与BDR

    在这一章中,将向您介绍一个全新的技术,成为BDR.双向复制(BDR),在PostgreSQL的世界里,它绝对是一颗冉冉升起的新星.在不久的将来,许多新的东西将会被看到,并且人们可以期待一个蓬勃发展的项 ...

  9. PostgreSQL Replication之扩展与BDR

    在这一章中,将向您介绍一个全新的技术,成为BDR.双向复制(BDR),在PostgreSQL的世界里,它绝对是一颗冉冉升起的新星.在不久的将来,许多新的东西将会被看到,并且人们可以期待一个蓬勃发展的项 ...

随机推荐

  1. 转json using指令

    using Newtonsoft.Json;using Newtonsoft.Json.Converters; string result = JsonConvert.SerializeObject( ...

  2. [转载]Eclipse提示No java virtual machine

    第一次运行Eclipse,经常会提示下面的问题:... No java virtual machine  was found after searching the follwing location ...

  3. iOS 启动图那些坑

    当我们按照图片尺寸要求将所有的图片添加到工程中后,上传打包的工程时可能会出现一个问题:说工程中不存在启动图.但是我们明明已经导入启动图了,那么问题出在哪呢.我经过多次试验,发现压缩过后的图片作为启动图 ...

  4. vs2012中VC连接mysql

    在MySQL的安装目录下你会找到include和lib文件夹(完全安装模式下),里面分别是C接口的头文件和库文件,库文件只用libmysql.lib就好了,即把libmysql.lib拷贝到了VC++ ...

  5. linux修改密码的几种方法

    1.  启动电脑 ,进入grub模式.  也就是下面这个模式: 按下e键,进入下面这个画面.... 选第二个(kernel的那个):  然后按下e键之后进入 下面这个版面: 之后敲入  single ...

  6. WC2015 酱油记

    这是真·酱油记! Day0 因为我们在上海,所以只要坐高铁就可以了2333.到了火车站以后我们坐大巴到学军中学恩,结果坐大巴的时间和做坐高铁的时间差不做←_←. 吐槽了一下住宿环境和课程表就已经晚上了 ...

  7. R语言apply函数族笔记

    为什么用apply 因为我是一个程序员,所以在最初学习R的时候,当成“又一门编程语言”来学习,但是怎么学都觉得别扭.现在我的看法倾向于,R不是一种通用型的编程语言,而是一种统计领域的软件工具.因此,不 ...

  8. 使用实时文件夹显示ContentProvider的数据

    所谓实时文件夹(即LiveFolder),是指用于显示ContentProvider提供的数据的桌面组件. ContentProvider用于向外提供数据访问的接口,一个应用程序可通过ContentP ...

  9. Android RecyclerView 使用完全解析

    概述 RecyclerView出现已经有一段时间了,相信大家肯定不陌生了,大家可以通过导入support-v7对其进行使用. 据官方的介绍,该控件用于在有限的窗口中展示大量数据集,其实这样功能的控件我 ...

  10. hadoop运行原理之Job运行(三) TaskTracker的启动及初始化

    与JobTracker一样,TaskTracker也有main()方法,然后以线程的方式启动(继承了Runnable接口).main()方法中主要包含两步:一是创建一个TaskTracker对象:二是 ...