HDU 5726 GCD
GCD
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Give you a sequence of $N(N≤100,000)$ integers : $a_1,\cdots,a_n(0<a_i≤1000,000,000)$. There are $Q(Q≤100,000)$ queries. For each query $l,r$ you have to calculate $\text{gcd}(a_l,,a_{l+1},\cdots,a_r)$ and count the number of pairs$(l′,r′)(1≤l<r≤N)$such that $\text{gcd}(a_{l′},a_{l′+1},\cdots,a_{r′})$ equal $\text{gcd}(a_l,a_{l+1},...,a_{r})$.
Input
The first line of input contains a number $T$, which stands for the number of test cases you need to solve.
The first line of each case contains a number $N$, denoting the number of integers.
The second line contains $N$ integers, $a_1,\cdots,a_n(0<a_i≤1000,000,000)$.
The third line contains a number $Q$, denoting the number of queries.
For the next $Q$ lines, $i\text{-th}$ line contains two number , stand for the $l_i,r_i$, stand for the $i\text{-th}$ queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for $\text{gcd}(a_l,a_{l+1}, \cdots,a_r)$ and the second number stands for the number of pairs$(l′,r′)$ such that $\text{gcd}(a_{l′},a_{l′+1},\cdots,a_{r′})$ equal $\text{gcd}(a_l,a_{l+1},\cdots,a_r)$.
Sample Input
1
5
1 2 4 6 7
4
1 5
2 4
3 4
4 4
Sample Output
Case #1:
1 8
2 4
2 4
6 1
Author
HIT
Source
2016 Multi-University Training Contest 1
题意:
支持查询: (1) 区间gcd, (2) gcd值等于k的区间数
Solution:
区间gcd的查询线段树即可解决, 另外还能支持单点修改. 但这题要求支持查询gcd值等于k的区间个数, 线段树就有点乏力了, 因为这个信息大概不太好通过合并区间信息来得到. 我们来考虑区间gcd的性质:
令$\gcd_r(l)\quad (1\le l \le r) $表示, $l$到$r$的$\gcd$. 不难看出:
- $\gcd_r(l)$随着$l$的增大是单调不减的
- $\gcd_r(l)$最多取$\log{a_r}$个值, 因为在区间左端点从$r$移动到$l$的过程中gcd每缩小到一个新值都是因为除以了上个gcd的某个因子, 因而至少缩小为上个gcd的$\frac{1}{2}$, 从而不同的区间$\gcd$值最多有$\log{a_r}$个
因此, 我们可以对每个右端点$r$, 维护函数$\gcd_r(l)$. 实现方法是:
用vector<pair<int,int>> f 存某个函数$\gcd_r(l)$的每一段 (最多有$\log{a_r}$段), f[i].first表示第$i$段的左端点, f[i].second表示第$i$段的函数值.
在维护这$n$个函数的过程中, 用map记录每个$\gcd$出现的次数 (不同$\gcd$值最多有$O(n\log{N})$个, 实际上远达不到这个值.
接下来我们考虑如何利用上面维护好的函数查询某个区间$[l,r]$的$\gcd$.
我们可以在函数$g_r(l)$中二分查询小于等于的$l$的first的最大值对应的second的值, 这便是答案.
言不尽意, 详见代码.
Implementation:
#include <bits/stdc++.h>
using namespace std; const int N(1e5+);
typedef pair<int,int> P; vector<P> f[N];
unordered_map<int,long long> cnt;
int T, n, q, cs; int main(){
for(cin>>T; T--; ){
cin>>n;
for(int i=, gcd, pos; i<=n; i++){
scanf("%d", &gcd), pos=i, f[i].clear();
for(auto x:f[i-]){
if(__gcd(gcd, x.second)!=gcd) f[i].push_back({pos, gcd});
gcd=__gcd(gcd, x.second), pos=x.first;
}
f[i].push_back({pos, gcd});
}
cnt.clear();
for(int i=; i<=n; i++){
int pos=i+;
for(auto x:f[i])
cnt[x.second]+=pos-x.first, pos=x.first;
}
cin>>q;
printf("Case #%d:\n", ++cs);
for(int l, r; q--; ){
scanf("%d%d", &l, &r);
int gcd=lower_bound(f[r].begin(), f[r].end(), P(l, INT_MAX), greater<P>())->second;
printf("%d %lld\n", gcd, cnt[gcd]);
}
}
}
HDU 5726 GCD的更多相关文章
- HDU 5726 GCD 区间GCD=k的个数
GCD Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5726 GCD (RMQ + 二分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726 给你n个数,q个询问,每个询问问你有多少对l r的gcd(a[l] , ... , a[r]) ...
- HDU 5726 GCD(DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5726 [题目大意] 给出数列An,对于询问的区间[L,R],求出区间内数的GCD值,并且求出GCD ...
- HDU 5726 GCD(RMQ+二分)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5726 题意:给出一串数字,现在有多次询问,每次询问输出(l,r)范围内所有数的gcd值,并且输出有多 ...
- hdu 5726 GCD 暴力倍增rmq
GCD/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence ...
- HDU 5726 GCD (2016 Multi-University Training Contest 1)
Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Description Give y ...
- hdu 5726 GCD 倍增+ 二分
题目链接 给n个数, 定义一个运算f[l,r] = gcd(al, al+1,....ar). 然后给你m个询问, 每次询问给出l, r. 求出f[l, r]的值以及有多少对l', r' 使得f[l, ...
- HDU 5726 GCD(ST&RMQ)
题目链接 GCD 先ST倍增预处理,f[i][j]表示从i开始(包含第i个数)的连续2^j个数的最大公约数. 这样就可以在O(1)内询问得到a[l]到a[r]之间的所有数的最大公约数的值. 然后对于每 ...
- HDU 5726 GCD (2016多校、二分、ST表处理区间GCD、数学)
题目链接 题意 : 给出一个有 N 个数字的整数数列.给出 Q 个问询.每次问询给出一个区间.用 ( L.R ) 表示.要你统计这个整数数列所有的子区间中有多少个和 GCD( L ~ R ) 相等.输 ...
随机推荐
- opencv4-highgui之视频的输入和输出以及滚动条
这是<opencv2.4.9tutorial.pdf>的highgui的三个例子.通过简短的介绍来实现不同函数的理解,省去一些不需要说的东西. 一.增加滑动条 这是opencv中为数不多的 ...
- 我的Logo设计简史
近日,日本东京奥运会会微因涉嫌抄袭而被弃用的新闻引起设计界的一翻热论.在此我想到自己的LOGO设计,虽说并一定不好看甚至自己看回来都觉得略丑,但 几乎没有过抄袭的念头.有句话说,不想当设计师的程序猿不 ...
- 用H5+Boostrap做简单的音乐播放器
前言:这个是综合一下我最近在学的东西做的小Demo,到实际使用还有距离,但是用来练手巩固知识点还是不错的,最近在二刷JS书和Boostrap.css的源码,做完这个Demo也算是暂告一段落,接下来是j ...
- JVM内存管理------GC算法精解(五分钟教你终极算法---分代搜集算法)
引言 何为终极算法? 其实就是现在的JVM采用的算法,并非真正的终极.说不定若干年以后,还会有新的终极算法,而且几乎是一定会有,因为LZ相信高人们的能力. 那么分代搜集算法是怎么处理GC的呢? 对象分 ...
- .Net分布式异常报警系统-简介
系统简介 分布式异常报警系统就是收集系统运行过程中产生的未处理异常,检查系统运行的状态,并将异常信息统一发送到服务端,由服务端将信息通知到相关的责任人. 问题 我们在项目开发中可能遇到以下几个问题: ...
- 将Table表格导出到Excel
1.导出当前页 效果如下: 前台代码: @{ Layout = null; } <!DOCTYPE html> <html> <head> <meta nam ...
- Oracle学习——安装系列
简介:Oracle Database,又名Oracle RDBMS,或简称Oracle.是甲骨文公司的一款关系数据库管理系统.它是在数据库领域一直处于领先地位的产品.可以说Oracle数据库系统是目前 ...
- 网页倒计时,动态显示"××年还剩××天××时××分××秒"
var target = document.getElementById('target'); function getTimeString(){ // 要计算任意两个日期的时间差只要修改curren ...
- BroadcoastReceiver之短信到来监听和获取内容
废话就不说了,新建类继承,然后配置Manifest.xml:如下 <!--需要给一个接收短信的权限 --> <uses-permission android:name="a ...
- FlashFXP|FTP
经典的FTP传输工具FlashFxp,留作几年吧!看和曾经用的软件代表着岁月的流逝和时间的推进性! 洒脱度过生活中的每一天.每一分钟,Mvpbang追随一生! 压缩包中有秘钥文件-flashfxp.k ...