POJ 1236 Network of Schools(强连通分量/Tarjan缩点)
Description
A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input
The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output
Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.
Sample Input
5 2 4 3 0 4 5 0 0 0 1 0
Sample Output
1 2
思路
题意:
N(2<=N <=100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,
- 1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。
- 2,至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。
分析:
首先找连通分量,然后看连通分量的入度为0点的总数,出度为0点的总数,那么问要向多少学校发放软件,就是入度为零的个数,这样才能保证所有点最终都能得到软件
第二问添加多少条边可以得到使整个图达到一个强连通分量,答案是入度为0的个数和出度为0的个数中最大的值。将这个图的所有子树找出来,然后将一棵子树的叶子结点(出度为0)连到另外一棵子树的根结点上(入度为0),这样将所有的叶子结点和根节点全部消掉之后,就可以得到一整个强连通分量,看最少多少条边,这样就是看叶子结点和根节点哪个多,即出度为0和入度为0哪个多
//入度数组indeg[]  出度数组outdeg[]
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 105;
struct Edge{
	int v,next;
}edge[maxn*maxn];
int head[maxn],dfn[maxn],low[maxn],st[maxn],inst[maxn],belong[maxn],indeg[maxn],outdeg[maxn];
int tot,top,in,out,scc_cnt,index,N;
void init()
{
	tot = top = scc_cnt = index = 0;
	in = out = 0;
	memset(head,-1,sizeof(head));	memset(inst,0,sizeof(inst));
	memset(dfn,0,sizeof(dfn));		memset(low,0,sizeof(low));
	memset(indeg,0,sizeof(indeg));	memset(outdeg,0,sizeof(outdeg));
}
void addedge(int u,int v)
{
	edge[tot] = (Edge){v,head[u]};
	head[u] = tot++;
}
void targin(int u)
{
	int v;
	dfn[u] = low[u] = ++index;
	st[++top] = u;
	inst[u] = 1;
	for (int i = head[u];i != -1;i = edge[i].next)
	{
		v = edge[i].v;
		if (!dfn[v])
		{
			targin(v);
			low[u] = min(low[u],low[v]);
		}
		else if (inst[v])
			low[u] = min(low[u],dfn[v]);
	}
	if (dfn[u] == low[u])
	{
		scc_cnt++;
		do
		{
			v = st[top--];
			inst[v] = 0;
			belong[v] = scc_cnt;
		}
		while (u != v);
	}
}
int main()
{
	while (~scanf("%d",&N))
	{
		int v;
		init();
		for (int i = 1;i <= N;i++)
			while (~scanf("%d",&v) && v)	addedge(i,v);
		for (int i = 1;i <= N;i++)	if (!dfn[i])	targin(i);
		for (int i = 1;i <= N;i++)
		for (int j = head[i]; j != -1;j = edge[j].next)
		{
			v = edge[j].v;
			if (belong[i] != belong[v])
			{
				indeg[belong[v]]++;
				outdeg[belong[i]]++;
			}
		}
		for (int i = 1;i <= scc_cnt;i++)
		{
			if (!indeg[i])	in++;
			if (!outdeg[i])	out++;
		}
		if (scc_cnt == 1)	printf("1\n0\n");
		else printf("%d\n%d\n",in,max(in,out));
	}
	return 0;
}
POJ 1236 Network of Schools(强连通分量/Tarjan缩点)的更多相关文章
- POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)
		Network of Schools A number of schools are connected to a computer network. Agreements have been dev ... 
- POJ 1236 Network of Schools (强连通分量缩点求度数)
		题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ... 
- poj~1236 Network of Schools 强连通入门题
		一些学校连接到计算机网络.这些学校之间已经达成了协议: 每所学校都有一份分发软件的学校名单("接收学校"). 请注意,如果B在学校A的分发名单中,则A不一定出现在学校B的名单中您需 ... 
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
		POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ... 
- POJ 1236 Network of Schools(强连通分量)
		POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ... 
- Poj 1236 Network of Schools (Tarjan)
		题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ... 
- poj 1236 Network of Schools(又是强连通分量+缩点)
		http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ... 
- [tarjan] poj 1236 Network of Schools
		主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K To ... 
- poj 1236 Network of Schools(tarjan+缩点)
		Network of Schools Description A number of schools are connected to a computer network. Agreements h ... 
- POJ 1236 Network of Schools (Tarjan)
		Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22745 Accepted: 89 ... 
随机推荐
- java 客户端链接不上redis解决方案
			原文地址:http://blog.csdn.net/yingxiake/article/details/51472810 出现问题描述: 1.Could not get a resource from ... 
- ThreadLocal原理及其实际应用
			前言 java猿在面试中,经常会被问到1个问题: java实现同步有哪几种方式? 大家一般都会回答使用synchronized, 那么还有其他方式吗? 答案是肯定的, 另外一种方式也就是本文要说的Th ... 
- Theano1.1-安装
			之前一直想弄theano,可是python不是很懂,在学习了一段时间之后开始安装theano.当然官网上的安装资料是全,可是也太繁琐了.这里介绍的是最简单,最方面的安装theano的方法.官网首页:h ... 
- 这些javascript面试题,你做对了几道?
			1.---------------------------------------------------- var fun = function(){ this.name = 'peter'; re ... 
- .NET 平台下的插件化开发内核(Rabbit Kernel)
			每个程序猿都有一个框架梦,曾经在2013年8月15日写过一篇"Koala Framework是什么?我为什么要写这个框架?"的文章,在开放框架路上迈出了第一步,之后作者如愿找到了一 ... 
- js10秒倒计时鼠标点击次数统计
			<html> <head> <meta charset="utf-8"/> <script type="text/javascr ... 
- Java 增强型的for循环 for each
			Java 增强型的for循环 for each For-Each循环 For-Each循环也叫增强型的for循环,或者叫foreach循环. For-Each循环是JDK5.0的新特性(其他新特性比如 ... 
- Android开发之ViewPager的简单使用
			ViewPager是V4包中的,如果你的编译器敲不出ViewPager,那么你就需要添加,看下面: 第一步:点击+号 第二步:选择第一个Library 第三步:添加这个包: 然后点击ok-->o ... 
- 在Word2013中多次应用格式刷
			顾名思义,格式刷是为了方便需要跨区域操作时候,能快速的应用格式到相应文本.那么怎么使用word进行格式刷的多次使用呢.我们先来看单次的,这个比较容易,只要在先需要的格式单击一次格式刷,再到需要的文本执 ... 
- 网络设计中需要考虑的时延latency差异
			Jeff Dean提到不同数据访问方式latency差异 Numbers Everyone Should Know L1 cache reference 0.5 ns Branch mispredic ... 
