传送门

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

思路

  题意:

N(2<=N <=100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,

  • 1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。
  • 2,至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。

  分析:

首先找连通分量,然后看连通分量的入度为0点的总数,出度为0点的总数,那么问要向多少学校发放软件,就是入度为零的个数,这样才能保证所有点最终都能得到软件
第二问添加多少条边可以得到使整个图达到一个强连通分量,答案是入度为0的个数和出度为0的个数中最大的值。将这个图的所有子树找出来,然后将一棵子树的叶子结点(出度为0)连到另外一棵子树的根结点上(入度为0),这样将所有的叶子结点和根节点全部消掉之后,就可以得到一整个强连通分量,看最少多少条边,这样就是看叶子结点和根节点哪个多,即出度为0和入度为0哪个多

//入度数组indeg[]  出度数组outdeg[]
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 105;
struct Edge{
	int v,next;
}edge[maxn*maxn];
int head[maxn],dfn[maxn],low[maxn],st[maxn],inst[maxn],belong[maxn],indeg[maxn],outdeg[maxn];
int tot,top,in,out,scc_cnt,index,N;

void init()
{
	tot = top = scc_cnt = index = 0;
	in = out = 0;
	memset(head,-1,sizeof(head));	memset(inst,0,sizeof(inst));
	memset(dfn,0,sizeof(dfn));		memset(low,0,sizeof(low));
	memset(indeg,0,sizeof(indeg));	memset(outdeg,0,sizeof(outdeg));
}

void addedge(int u,int v)
{
	edge[tot] = (Edge){v,head[u]};
	head[u] = tot++;
}

void targin(int u)
{
	int v;
	dfn[u] = low[u] = ++index;
	st[++top] = u;
	inst[u] = 1;
	for (int i = head[u];i != -1;i = edge[i].next)
	{
		v = edge[i].v;
		if (!dfn[v])
		{
			targin(v);
			low[u] = min(low[u],low[v]);
		}
		else if (inst[v])
			low[u] = min(low[u],dfn[v]);
	}
	if (dfn[u] == low[u])
	{
		scc_cnt++;
		do
		{
			v = st[top--];
			inst[v] = 0;
			belong[v] = scc_cnt;
		}
		while (u != v);
	}
}

int main()
{
	while (~scanf("%d",&N))
	{
		int v;
		init();
		for (int i = 1;i <= N;i++)
			while (~scanf("%d",&v) && v)	addedge(i,v);
		for (int i = 1;i <= N;i++)	if (!dfn[i])	targin(i);
		for (int i = 1;i <= N;i++)
		for (int j = head[i]; j != -1;j = edge[j].next)
		{
			v = edge[j].v;
			if (belong[i] != belong[v])
			{
				indeg[belong[v]]++;
				outdeg[belong[i]]++;
			}
		}
		for (int i = 1;i <= scc_cnt;i++)
		{
			if (!indeg[i])	in++;
			if (!outdeg[i])	out++;
		}
		if (scc_cnt == 1)	printf("1\n0\n");
		else printf("%d\n%d\n",in,max(in,out));
	}
	return 0;
}

  

POJ 1236 Network of Schools(强连通分量/Tarjan缩点)的更多相关文章

  1. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  2. POJ 1236 Network of Schools (强连通分量缩点求度数)

    题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...

  3. poj~1236 Network of Schools 强连通入门题

    一些学校连接到计算机网络.这些学校之间已经达成了协议: 每所学校都有一份分发软件的学校名单("接收学校"). 请注意,如果B在学校A的分发名单中,则A不一定出现在学校B的名单中您需 ...

  4. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  5. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  6. Poj 1236 Network of Schools (Tarjan)

    题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...

  7. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  8. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  9. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  10. POJ 1236 Network of Schools (Tarjan)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22745   Accepted: 89 ...

随机推荐

  1. <实训|第六天>偷偷让新手的Linux无限重启附linux主机名称不是随便乱改的!

    先说个事情:这几天我正在忙一个项目的设计,8月1号之前要弄出来,所以每天都要弄到很晚,可能更新就有点跟不上了,不过我如果有时间的话,我就更新,没时间的话,我会在8月1号之后统一更新出来,希望大家谅解! ...

  2. 细数Javascript技术栈中的四种依赖注入

    作为面向对象编程中实现控制反转(Inversion of Control,下文称IoC)最常见的技术手段之一,依赖注入(Dependency Injection,下文称DI)可谓在OOP编程中大行其道 ...

  3. ZeroClipboard / jquery.zclip.min.js跨浏览器复制插件使用中遇到的问题解决

    之前写过一个淘宝优惠券连接PC端转手机端连接的小工具,当时写到将转换好的url复制到剪切板这块时解决了IE和火狐,就是没办法搞定Chrome,知道可以通过flash搞定,但是觉得太麻烦没有仔细研究. ...

  4. word2vec使用说明补充(google工具包)

    [本文转自http://ir.dlut.edu.cn/NewsShow.aspx?ID=253,感谢原作者] word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的 ...

  5. Ubuntu backlight

    我们可以通过键盘来调节亮度,但是那样亮度无法微调,每次变亮变得太多. 在 /sys/class/backlight/nv_backlight 这个目录下,brightness 是最主要的.backli ...

  6. Collections的应用

    Collection : 接口  Collections : 集合的工具类    Arrays (数组的工具类)  只能操作list集合    说出Collection和Collections 的区别 ...

  7. Hibernate原生SQL映射MySQL的CHAR(n)类型到String时出错

    今天在用Hibernate通过原生SQL和ResultTransformer映射时,出现数据类型不匹配的错误.但是通过Entity映射,没有问题.在网上找了好多答案,终于解决了. 核心代码: Stri ...

  8. Error: [ng:areq]

    错误描述:Error: [ng:areq] http://errors.angularjs.org/1.4.8/ng/areq?p0=HelloCtrl&p1=not%20a%20functi ...

  9. IntelliJ_13书签

    一.书签视图   二.使用方法 1.添加书签:Ctrl+Shift+数字 2.跳转到书签:Ctrl+数字 来自为知笔记(Wiz)

  10. 【CodeVS 1993】草地排水 isap模板题

    开始网络流的学习,更新一下isap的模板 #include<cstdio> #include<cstring> #include<algorithm> #defin ...