答案是$O(\log n)$级别的,故答案不超过6。

当答案是12345时,暴力枚举+压位检验即可,否则直接输出6。

时间复杂度$O(n^5)$。

#include<cstdio>
#define N 80
#define rep(i,n) for(int i=0;i<n;i++)
typedef unsigned int U;
int n,T;char s[N];
struct P{
U x,y,z;
P(){x=y=z=0;}
P(U _x,U _y,U _z){x=_x,y=_y,z=_z;}
inline P operator|(const P&b){return P(x|b.x,y|b.y,z|b.z);}
inline void set(int p){
if(p<32){x|=1U<<p;return;}
p-=32;
if(p<32){y|=1U<<p;return;}
z|=1U<<(p-32);
}
inline int cnt(){return __builtin_popcount(x)+__builtin_popcount(y)+__builtin_popcount(z);}
}g[N],S;
inline bool one(){
rep(i,n)if(g[i].cnt()==n)return 1;
return 0;
}
inline bool two(){
rep(i,n)rep(j,i)if((g[i]|g[j]).cnt()==n)return 1;
return 0;
}
inline bool three(){
rep(i,n)rep(j,i)rep(k,j)if((g[i]|g[j]|g[k]).cnt()==n)return 1;
return 0;
}
inline bool four(){
rep(i,n)rep(j,i)rep(k,j)rep(l,k)if((g[i]|g[j]|g[k]|g[l]).cnt()==n)return 1;
return 0;
}
inline bool five(){
rep(i,n)rep(j,i)rep(k,j)rep(l,k)rep(m,l)if((g[i]|g[j]|g[k]|g[l]|g[m]).cnt()==n)return 1;
return 0;
}
int main(){
while(~scanf("%d",&n)){
printf("Case %d: ",++T);
rep(i,n){
scanf("%s",s);
g[i]=P();
g[i].set(i);
rep(j,n)if(s[j]=='1')g[i].set(j);
}
if(one()){puts("1");continue;}
if(two()){puts("2");continue;}
if(three()){puts("3");continue;}
if(four()){puts("4");continue;}
if(five()){puts("5");continue;}
puts("6");
}
return 0;
}

  

BZOJ3979 : [WF2012]infiltration的更多相关文章

  1. [WF2012]infiltration

    [WF2012]infiltration 完全图 最多选择logn个点(下取整)(每选择一个点覆盖至少一半的规模) 暴力O(75^5)(不严格)枚举+bitset (随机化也可过) #include& ...

  2. bzoj 3979: [WF2012]infiltration【瞎搞+随机化】

    参考:https://www.cnblogs.com/ccz181078/p/5622200.html 非常服气.jpg 就是random_shuffle几次然后顺着找,ans取min... #inc ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. bzoj 3978: [WF2012]Fibonacci Words

    Description 斐波那契01字符串的定义如下 F(n) = { 0  if n = 0 1  if n = 1 F(n-1)+F(n-2) if n >= 2 } 这里+的定义是字符串的 ...

  5. [WorldFinal 2012E]Infiltration(dfs+图论)

    Description 题意:给定一个点数为n的竞赛图,求图的最小支配集 n<=75 Solution 如果将竞赛图的一个点删去,这个图还是竞赛图 而竞赛图每个点相连的边数为(n-1),那么删去 ...

  6. Constructing continuous functions

    This post summarises different ways of constructing continuous functions, which are introduced in Se ...

  7. 做数据挖掘,就算发 20 几分的 CNS 子刊,也是垃圾!?--转载

    关于数据挖掘发表文章,我们知道很多人是看不上.瞧不起.嗤之以鼻的.大抵是因为这些人平时只发 CNS 主刊,所以才认为通过数据挖掘这种用「别人的数据」或者叫「干实验」来发文章是“「垃圾」,没有什么价值. ...

  8. Can peel peel solve pesticide problem

    Can peel peel solve pesticide problem? Middle peasants medicinal modern agriculture more and more, t ...

  9. Cryptographic method and system

    The present invention relates to the field of security of electronic data and/or communications. In ...

随机推荐

  1. XMPP框架下微信项目总结(8)图片发送

    前言:“图片”发送和“聊天文本”都是通过模块发起的成为:“消息模块”(反正传递的都是字符串) 发送原理:     1 current客户端获取本地图片 2 xmpp发送“字符串”(为什么是字符串?1: ...

  2. Java动态代理一Proxy

    什么是动态代理? 动态代理可以提供对另一个对象的访问,同时隐藏实际对象的具体事实.代理一般会实现它所表示的实际对象的接口.代理可以访问实际对象,但是延迟实现实际对象的部分功能,实际对象实现系统的实际功 ...

  3. Swift - as、as!、as?三种类型转换操作使用一览

    as.as!.as? 这三种类型转换操作符的异同,以及各自的使用场景.   1,as使用场合 (1)从派生类转换为基类,向上转型(upcasts) 1 2 3 4 class Animal {} cl ...

  4. myeclipse 8.5 注册码

    刚才启动突然发现MyEclipse原来是收费的...汗一把,到弹出注册框我才知道.....老天啊我活的该有多窝囊.. 弹框很烦人,我一个穷书生既想继续学习又囊中羞涩无力购买,只好用盗版了(找个理由辩解 ...

  5. js函数的几个特殊点

    在ECMAScript中,Function(函数)类型实际上是对象.每个函数都是Function类型的实例,而且都与其他引用类型一样具有属性和方法.由于函数是对象,因此函数名实际上也是一个指向函数对象 ...

  6. Lattice 的 Framebuffer IP核使用调试笔记之datasheet笔记

    本文由远航路上ing 原创,转载请标明出处. 学习使用以及调试Framebuffer IP 核已经有一段时间了,调试的时候总想记录些东西,可是忙的时候就没有时间来写,只有先找个地方记录下,以后再总结. ...

  7. php 删除文件夹

    <?php // ./tp // ./tp/Public function deldir($dirname) { if(!file_exists($dirname)) { die("文 ...

  8. 昨晚把家里的ie升级到11

    其实网上有些东西是实用的,不过之前的一次锁屏唤醒机器死机我就强制关机了,昨天把大部分驱动升级.

  9. shell学习三十四天----printf详解

    http://blog.csdn.net/shanyongxu/article/details/46744055

  10. hdu 4411 2012杭州赛区网络赛 最小费用最大流 ***

    题意: 有 n+1 个城市编号 0..n,有 m 条无向边,在 0 城市有个警察总部,最多可以派出 k 个逮捕队伍,在1..n 每个城市有一个犯罪团伙,          每个逮捕队伍在每个城市可以选 ...