D. Vika and Segments
 
 

Vika has an infinite sheet of squared paper. Initially all squares are white. She introduced a two-dimensional coordinate system on this sheet and drew n black horizontal and vertical segments parallel to the coordinate axes. All segments have width equal to 1 square, that means every segment occupy some set of neighbouring squares situated in one row or one column.

Your task is to calculate the number of painted cells. If a cell was painted more than once, it should be calculated exactly once.

Input
 

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of segments drawn by Vika.

Each of the next n lines contains four integers x1, y1, x2 and y2 ( - 109 ≤ x1, y1, x2, y2 ≤ 109) — the coordinates of the endpoints of the segments drawn by Vika. It is guaranteed that all the segments are parallel to coordinate axes. Segments may touch, overlap and even completely coincide.

Output
 

Print the number of cells painted by Vika. If a cell was painted more than once, it should be calculated exactly once in the answer.

Examples
input
 
3
0 1 2 1
1 4 1 2
0 3 2 3
output
 
8
 
Note

In the first sample Vika will paint squares (0, 1), (1, 1), (2, 1), (1, 2), (1, 3), (1, 4), (0, 3) and (2, 3).

题意:

  给你n天平行x,y轴的线段

  问你遍历的点有多少个

题解:

  将线段 扩展成一个长度为x * 1 的矩阵

  做一遍线段树扫描线求矩阵面积并

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000") const int N = 5e5+, M = 5e5+, inf = 2e9, mod = 1e9+;
const double Pi = acos(-1.0);
typedef long long LL;
#define ls k<<1
#define rs ls | 1 int san[N], sum[N], vis[N], n, cnt = ;
struct edge{
int l,r,x,in;
edge(int l = , int r = , int x = , int in = ) : l(l), r(r), x(x), in(in) {}
bool operator < (const edge &b) const {
return x < b.x || x == b.x && in > b.in;
}
}e[N];
int Hash(int x) {return lower_bound(san+,san+cnt+,x) - san;}
void push_up(int k,int ll,int rr) {
if(vis[k]) sum[k] = san[rr + ] - san[ll];
else if(ll == rr) sum[k] = ;
else sum[k] = sum[ls] + sum[rs];
}
void update(int l,int r,int c,int ll,int rr,int k) {
if(ll == l && rr == r) {
vis[k] += c;
push_up(k,ll,rr);
return ;
}
int mid = (ll + rr) >> ;
if(r <= mid) update(l,r,c,ll,mid,ls);
else if(l > mid) update(l,r,c,mid+,rr,rs);
else update(l,mid,c,ll,mid,ls), update(mid+,r,c,mid+,rr,rs);
push_up(k,ll,rr);
}
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) {
int x,y,xx,yy;
scanf("%d%d%d%d",&x,&y,&xx,&yy);
if(x > xx) swap(x,xx);
if(y > yy) swap(y,yy);
xx++, yy++;
san[++cnt] = y;
san[++cnt] = yy;
e[i] = edge(y,yy,x,);
e[i+n] = edge(y,yy,xx,-);
} sort(san+,san+cnt+);
cnt = unique(san + , san + cnt + ) - san - ; int m = n << ;
sort(e+,e+m+); LL ans = ;
for(int i = ; i <= m; ++i) {
int l = Hash(e[i].l);
int r = Hash(e[i].r) - ;
if(l <= r) update(l,r,e[i].in,,m,);
ans += 1LL * sum[] * (e[i+].x - e[i].x);
}
cout<<ans<<endl;
}

Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并的更多相关文章

  1. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  2. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  3. Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树

    C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...

  4. Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树

    题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...

  5. Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)

    题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...

  6. Codeforces Round #321 (Div. 2) E. Kefa and Watch 线段树hash

    E. Kefa and Watch Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/prob ...

  7. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  8. Codeforces Round #207 (Div. 1) A. Knight Tournament (线段树离线)

    题目:http://codeforces.com/problemset/problem/356/A 题意:首先给你n,m,代表有n个人还有m次描述,下面m行,每行l,r,x,代表l到r这个区间都被x所 ...

  9. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树

    E. A Simple Task 题目连接: http://www.codeforces.com/contest/558/problem/E Description This task is very ...

随机推荐

  1. FIDO 标准简介

    FIDO 联盟(Fast IDentity Online Alliance)简介 网站:http://fidoalliance.org FIDO Alliance,成立于2012年7月. FIDO的目 ...

  2. iOS 在UITableViewCell中加入自定义view时view的frame设定注意

    由于需要重用同一个布局,于是在cellForRowAtIndexPath中把自定义view加在了cell上,我是这样设定view的frame的 var screenFrame = UIScreen.m ...

  3. c#图片输出

    1:  Response.BinaryWrite() 其实就是和输出文字一样 只是图片是流的形式; delegate long myDel(int first, int second); FileSt ...

  4. Linux下编译安装Apache 2.4

    Linux一般会自带httpd服务,但是版本一般不是最新,性能也不是最好,生产中建议手动安装官方源码包,安装Apache官方包之前首先要停止之前的httpd服务,停止后也可以卸载之前的版本 准备工作做 ...

  5. ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)

    看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.… ...

  6. Kinect SDK 安装失败

    错误提示:Kinect Management failed to start. 原因: 1, Kinect Management 服务相依的 Plug and Play的服务没有启动. 2,系统安装了 ...

  7. [转载]Masonry介绍与使用实践(快速上手Autolayout)

    原博地址 http://adad184.com/2014/09/28/use-masonry-to-quick-solve-autolayout/ 前言 1 MagicNumber -> aut ...

  8. NHibernate实战详解(二)映射配置与应用

    关于NHibernate的资料本身就不多,中文的就更少了,好在有一些翻译文章含金量很高,另外NHibernate与Hibernate的使用方式可谓神似,所以也有不少经验可以去参考Hibernate. ...

  9. Vim 强大的配置

    新建文件.vimrc,然后复制如下内容,并将该文件放到vim安装目录下 map <F9> :call SaveInputData()<CR> func! SaveInputDa ...

  10. Hibernate创建hqll时报错

    Hibernate 问题,在执行Query session.createQuery(hql) 报错误 出错截图: 这条语句在java运行环境下,直接连数据库不出错,如果在hiberante,strut ...