题意:bc round 73 div1 D 中文题面

分析:注意到10^7之内的数最多phi O(log(n))次就会变成1,

因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护。

每次求phi的时候就在平衡树上取出这个区间然后暴力求phi,如果一段数变成了1,

就在平衡树里面删掉它,最后统计答案的时候只要把区间中被删去的1加回答案即可,

时间复杂度O((n + m)logn)

注:平衡树,写起来麻烦(然后其实我也不会写)

但是题解当中说把一段相同的数缩成一个点,就很好

所以用线段树,节点维护区间和以及(当这个区间元素都相同时)维护这个元素

然后操作2和操作3就是普通的线段树应用,区间更新以及区间求和

然后操作1,由于我维护了一整段相同元素的区间,所以更新时,

只要按照区间更新,区间在更新范围内,且节点所管辖区间的元素全部相同的时候,直接修改节点

区间更新就好了,这样的话,时间复杂度不是很高

由于单个元素的范围是1e7,所以先筛一遍欧拉函数

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 1e7;
const int maxn=3e5+;
const LL mod = 1e9+;
int phi[N+],n,m,T;
int o[maxn<<],mark[maxn<<];
LL sum[maxn<<];
void pushup(int rt)
{
sum[rt]=sum[rt*]+sum[rt*+];
if(o[rt*]==o[rt*+]&&o[rt*])
o[rt]=o[rt*];
else o[rt]=;
}
void pushdown(int rt,int l,int r)
{
if(mark[rt])
{
int mid=(l+r)>>;
sum[rt*]=1ll*(LL)(mid-l+)*(LL)(mark[rt]);
sum[rt*+]=1ll*(LL)(r-mid)*(LL)(mark[rt]);
o[rt*]=o[rt*+]=mark[rt];
mark[rt*]=mark[rt*+]=mark[rt];
mark[rt]=;
}
}
void build(int rt,int l,int r)
{
if(l==r)
{
scanf("%d",&o[rt]);
sum[rt]=o[rt];
return ;
}
int mid=(l+r)>>;
build(rt*,l,mid);
build(rt*+,mid+,r);
pushup(rt);
}
void op1(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y&&o[rt])
{
int tmp=phi[o[rt]];
o[rt]=mark[rt]=tmp;
sum[rt]=1ll*(LL)(r-l+)*(LL)(tmp);
return;
}
pushdown(rt,l,r);
int mid=(l+r)>>;
if(x<=mid)op1(rt*,l,mid,x,y);
if(y>mid)op1(rt*+,mid+,r,x,y);
pushup(rt);
}
int t;
void op2(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
{
o[rt]=mark[rt]=t;
sum[rt]=1ll*(LL)(r-l+)*(LL)(t);
return;
}
pushdown(rt,l,r);
int mid=(l+r)>>;
if(x<=mid)op2(rt*,l,mid,x,y);
if(y>mid)op2(rt*+,mid+,r,x,y);
pushup(rt);
}
LL op3(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
return sum[rt];
pushdown(rt,l,r);
int mid=(l+r)>>;
LL ans=;
if(x<=mid)ans+=op3(rt*,l,mid,x,y);
if(y>mid)ans+=op3(rt*+,mid+,r,x,y);
return ans;
}
int main()
{
phi[]=;
for(int i=; i<=N; ++i)
{
if(!phi[i])
{
for(int j=i; j<=N; j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
scanf("%d",&T);
while(T--)
{
memset(o,,sizeof(o));
memset(mark,,sizeof(mark));
scanf("%d%d",&n,&m);
build(,,n);
while(m--)
{
int c,l,r;
scanf("%d%d%d",&c,&l,&r);
if(c==)scanf("%d",&t);
if(c==)op1(,,n,l,r);
else if(c==)op2(,,n,l,r);
else printf("%I64d\n",op3(,,n,l,r));
}
}
return ;
}

HDU 5634 Rikka with Phi 线段树的更多相关文章

  1. HDU5634 Rikka with Phi 线段树

    // HDU5634 Rikka with Phi 线段树 // 思路:操作1的时候,判断一下当前区间是不是每个数都相等,在每个数相等的区间上操作.相当于lazy,不必更新到底. #include & ...

  2. HDU 5634 Rikka with Phi

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5634 ------------------------------------------------ ...

  3. hdu 5828 Rikka with Sequence 线段树

    Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  4. HDU 6089 Rikka with Terrorist (线段树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...

  5. Rikka with Phi 线段树

    Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds ...

  6. HDU 5828 Rikka with Sequence (线段树+剪枝优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5828 给你n个数,三种操作.操作1是将l到r之间的数都加上x:操作2是将l到r之间的数都开方:操作3是 ...

  7. HDU 5828 Rikka with Sequence(线段树区间加开根求和)

    Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...

  8. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  9. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. WinForm 换行问题 textbox (转)

    WinForm 换行问题 textbox 今天碰到一段string在label中能正常换行,但是在textbox中却无法换行的问题. 首先考虑是换行符的问题.在网上查了些资料: 1.TextBox 中 ...

  2. 3.7 spring-property 子元素的使用与解析

    1.0 Property子元素的使用 property 子元素是再常用不过的了, 在看Spring源码之前,我们先看看它的使用方法, 1. 实例类如下: public class Animal { p ...

  3. 团体程序设计天梯赛-练习集L2-010. 排座位

    L2-010. 排座位 时间限制 150 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位. ...

  4. POJ1905Expanding Rods(二分)

    http://poj.org/problem?id=1905 题意 :在两堵实心墙中间有一根杆,长度为L,然后给它加热,温度是n,则两墙之间的杆会弯曲,长度会变为L'=(1+n*C)*L,求前后两个状 ...

  5. html代码究竟什么用途

    1.html代码,只能浏览器识别并读出.渲染出网页图形 2.html代码可以本地写,用浏览器渲染出.也可以服务器端通过http协议传送过来,在网页显示. 咱们上网看的网页都是服务器端通过http协议传 ...

  6. 使用session技术来实现网上商城购物车的功能

    首先.简单的了解session和cookie的区别: 一.session和cookie的区别: session是把用户的首写到用户独占的session中(服务器端) cookie是把用户的数据写给用户 ...

  7. Java Socket实战之一 单线程通信

    本文地址:http://blog.csdn.net/kongxx/article/details/7259436 现在做Java直接使用Socket的情况是越来越少,因为有很多的选择可选,比如说可以用 ...

  8. 202. Happy Number

    题目: Write an algorithm to determine if a number is "happy". A happy number is a number def ...

  9. P66、面试题8:旋转数组的最小数字

    题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素.例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数 ...

  10. java synchronized wait

    在多个线程要互斥访问数据,但线程间需要同步时——例如任务分多个阶段,特定线程负责特定阶段的情况,经常合作使用synchronized 和 wait() /** * * 计算输出其他线程锁计算的数据 * ...