题意:bc round 73 div1 D 中文题面

分析:注意到10^7之内的数最多phi O(log(n))次就会变成1,

因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护。

每次求phi的时候就在平衡树上取出这个区间然后暴力求phi,如果一段数变成了1,

就在平衡树里面删掉它,最后统计答案的时候只要把区间中被删去的1加回答案即可,

时间复杂度O((n + m)logn)

注:平衡树,写起来麻烦(然后其实我也不会写)

但是题解当中说把一段相同的数缩成一个点,就很好

所以用线段树,节点维护区间和以及(当这个区间元素都相同时)维护这个元素

然后操作2和操作3就是普通的线段树应用,区间更新以及区间求和

然后操作1,由于我维护了一整段相同元素的区间,所以更新时,

只要按照区间更新,区间在更新范围内,且节点所管辖区间的元素全部相同的时候,直接修改节点

区间更新就好了,这样的话,时间复杂度不是很高

由于单个元素的范围是1e7,所以先筛一遍欧拉函数

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 1e7;
const int maxn=3e5+;
const LL mod = 1e9+;
int phi[N+],n,m,T;
int o[maxn<<],mark[maxn<<];
LL sum[maxn<<];
void pushup(int rt)
{
sum[rt]=sum[rt*]+sum[rt*+];
if(o[rt*]==o[rt*+]&&o[rt*])
o[rt]=o[rt*];
else o[rt]=;
}
void pushdown(int rt,int l,int r)
{
if(mark[rt])
{
int mid=(l+r)>>;
sum[rt*]=1ll*(LL)(mid-l+)*(LL)(mark[rt]);
sum[rt*+]=1ll*(LL)(r-mid)*(LL)(mark[rt]);
o[rt*]=o[rt*+]=mark[rt];
mark[rt*]=mark[rt*+]=mark[rt];
mark[rt]=;
}
}
void build(int rt,int l,int r)
{
if(l==r)
{
scanf("%d",&o[rt]);
sum[rt]=o[rt];
return ;
}
int mid=(l+r)>>;
build(rt*,l,mid);
build(rt*+,mid+,r);
pushup(rt);
}
void op1(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y&&o[rt])
{
int tmp=phi[o[rt]];
o[rt]=mark[rt]=tmp;
sum[rt]=1ll*(LL)(r-l+)*(LL)(tmp);
return;
}
pushdown(rt,l,r);
int mid=(l+r)>>;
if(x<=mid)op1(rt*,l,mid,x,y);
if(y>mid)op1(rt*+,mid+,r,x,y);
pushup(rt);
}
int t;
void op2(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
{
o[rt]=mark[rt]=t;
sum[rt]=1ll*(LL)(r-l+)*(LL)(t);
return;
}
pushdown(rt,l,r);
int mid=(l+r)>>;
if(x<=mid)op2(rt*,l,mid,x,y);
if(y>mid)op2(rt*+,mid+,r,x,y);
pushup(rt);
}
LL op3(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
return sum[rt];
pushdown(rt,l,r);
int mid=(l+r)>>;
LL ans=;
if(x<=mid)ans+=op3(rt*,l,mid,x,y);
if(y>mid)ans+=op3(rt*+,mid+,r,x,y);
return ans;
}
int main()
{
phi[]=;
for(int i=; i<=N; ++i)
{
if(!phi[i])
{
for(int j=i; j<=N; j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
scanf("%d",&T);
while(T--)
{
memset(o,,sizeof(o));
memset(mark,,sizeof(mark));
scanf("%d%d",&n,&m);
build(,,n);
while(m--)
{
int c,l,r;
scanf("%d%d%d",&c,&l,&r);
if(c==)scanf("%d",&t);
if(c==)op1(,,n,l,r);
else if(c==)op2(,,n,l,r);
else printf("%I64d\n",op3(,,n,l,r));
}
}
return ;
}

HDU 5634 Rikka with Phi 线段树的更多相关文章

  1. HDU5634 Rikka with Phi 线段树

    // HDU5634 Rikka with Phi 线段树 // 思路:操作1的时候,判断一下当前区间是不是每个数都相等,在每个数相等的区间上操作.相当于lazy,不必更新到底. #include & ...

  2. HDU 5634 Rikka with Phi

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5634 ------------------------------------------------ ...

  3. hdu 5828 Rikka with Sequence 线段树

    Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  4. HDU 6089 Rikka with Terrorist (线段树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...

  5. Rikka with Phi 线段树

    Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds ...

  6. HDU 5828 Rikka with Sequence (线段树+剪枝优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5828 给你n个数,三种操作.操作1是将l到r之间的数都加上x:操作2是将l到r之间的数都开方:操作3是 ...

  7. HDU 5828 Rikka with Sequence(线段树区间加开根求和)

    Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...

  8. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  9. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. 【android-cocos2d-X iconv.h】在android下使用iconv

    (1) 下载文件 首先下载iconv文件  下载地址:http://download.csdn.net/detail/dingkun520wy/6703113 把解压后的iconv文件夹放到cocos ...

  2. JS创建类和对象

    JavaScript 创建类/对象的几种方式 在JS中,创建对象(Create Object)并不完全是我们时常说的创建类对象,JS中的对象强调的是一种复合类型,JS中创建对象及对对象的访问是极其灵活 ...

  3. Linux桌面扩展 Docky

    Docky是从GNOME Do项目剥离出来的一个Dock软件,最初即为GNOME Do的“Docky”模式. 后来开发者觉得,GNOME Do是个快速启动工具,弄个Docky模式有点不伦不类,于是,D ...

  4. MySQL中字符串函数详细介绍

    MySQL字符串函数对于针对字符串位置的操作,第一个位置被标记为1. ASCII(str)返回字符串str的 最左面字符的ASCII代码值.如果str是空字符串, 返回0.如果str是NULL,返回N ...

  5. Notepad++ 右键菜单自定义配置

    问:想在右键菜单里面多加几个功能,怎么加,比如区块注释 答:其实notepad++的配置文件存放路径不在自己的软件路径,而存在于 xp:C:\Documents and Settings\Admini ...

  6. FF浏览器来帮助我们录制脚本

    有时我们录制一个页面的脚本,我们需要知道这个页面哪些请求是耗时最大的?这个时候FF浏览器的网络分析功能就可以派上用场了,打开火狐浏览器按F12: 点击重新载入,可以看到下面的信息: 看到最耗时的操作了 ...

  7. 12 求1+2+...+n

    参考 http://www.cppblog.com/zengwei0771/archive/2012/04/28/173014.html 和 http://blog.csdn.net/shiren_b ...

  8. H264/AVC视频解码时AVC1和H264的区别

    AVC1与H264的区别 http://blog.csdn.net/qiuchangyong/article/details/6660253 H.264 Video Types The followi ...

  9. SQLite入门与分析(二)---设计与概念

    写在前面:谢谢各位的关注,没想到会有这么多人关注.高兴的同时,也感到压力,因为我接触SQLite也就几天,也没在实际开发中用过,只是最近项目的需求才来研究它,所以我很担心自己的文章是否会有错误,误导别 ...

  10. eclipse实现JavaWeb应用增量打包

    很多情况下,项目是不允许全量发布的,所以你得把有做修改的文件一个个挑出来,如果有成千上百的文件,你是不是要头大了? 以下方法应该可以让你得到解救!前提是你是用装有svn plugin的eclipse上 ...