[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ converges. This is called the exponential of $A$. The matrix $A$ is always invertible and $$\bex (\exp A)^{-1}=\exp(-A). \eex$$ Conversely, every invertible matrix can be expressed as the exponential of some matrix. Every unitary matrix can be expressed as the exponential of a skew-Hermitian matrix.
Solution.
(1). $$\bex \exp A=\sum_{n=0}^\infty \frac{A^n}{n!} \eex$$ follows from the fact that $$\bex \sum_{n=0}^\infty \frac{\sen{A}^2}{n!}=\exp \sen{A}<\infty \eex$$ and the completeness of $\M(n)$.
(2). By taking limits in $$\beex \bea &\quad\sex{\sum_{k=0}^n\frac{A^k}{k!}} \cdot \sex{\sum_{l=0}^n \frac{B^l}{l!}}\quad\sex{AB=BA}\\ &=\sum_{k,l=0}^n \frac{A^kB^l}{k!l!}\\ &=\sum_{s=0}^{2n} \frac{1}{s!}\sum_{k+l=s}\frac{s!}{k!(s-k)!}A^kB^{s-k}\\ &=\sum_{s=0}^{2n}\frac{1}{s!}(A+B)^s, \eea \eeex$$ we have $$\bex \exp(A)\cdot \exp (B)=\exp(A+B). \eex$$ Taking $B=-A$, we see readily that $$\bex \exp(A)\cdot \exp(-A)=I. \eex$$
(3). For invertible matrix $A$, by theJordan canonical decomposition, there exists an unitary $U$ such that $$\bex A=U\diag(J_1,\cdots,J_s)U^*, \eex$$ with the diagonals $\lm_i$ of $J_i$ is not equal to zero. We only need to show that $J_i$ is the exponential of some matrix. In fact, set $\mu_i\in\bbC$ satisfy $e^{\mu_i}=\lm_i$ and $$\bex \vLm_i=\diag(\mu_i,\cdots,\mu_i), \eex$$ then its exponential $$\bex \exp \vLm_i=\diag(\lm_i,\cdots,\lm_i) \eex$$ has the same eigenvalues of $J_i$. Hence, they are similar, and there exists some invertible matrix $P_i$ such that $$\bex J_i=P_i^{-1}\exp \vLm_i P_i=\exp [P_i^{-1}\vLm_iP_i]. \eex$$
(4). For $U\in \U(n)$, $$\bex U=\exp B\ra I=U^*U=\exp (B^*)\cdot \exp (B)=\exp(B^*+B)\ra B^*=-B. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 干货CentOS6.5_Nginx1.40_Php5.57_MySQL5.5.35编译安装全记录
http://www.unixdo.com/Unix_Linux/CentOS65_Nginx140_Php557_MySQL5535.html 如果是编译升级php,之前做过nginx的虚拟主机配置 ...
- BZOJ 1588 营业额统计 Splay
主要操作为Splay中插入节点,查找前驱和后继节点. 1: #include <cstdio> 2: #include <iostream> 3: #include <c ...
- 简单3d RPG游戏 之 005 选择敌人
选择一个敌人,按ctrl+d,复制出3个,调整一下它们的位置,不重叠,修改Tag为Enemy,禁用EnemyAI. 创建Targetting脚本,绑定到Player玩家对象 public class ...
- AForm
相信大部分程序员都接触过表单,表单是收集用户输入的不二之选,但是表单的开发又是最繁琐.最复杂的,简单地说,开发表单你需要涉及到很多知识: 布局,表单如何布局排版,看起来最清晰整洁,且符合用户体验 控件 ...
- URAL 1009 K-based numbers(DP递推)
点我看题目 题意 : K进制的N位数,不能有前导零,这N位数不能有连续的两个0在里边,问满足上述条件的数有多少个. 思路 : ch[i]代表着K进制的 i 位数,不含两个连续的0的个数. 当第 i 位 ...
- POJ2349+prim
最小生成树 /* prim 题意:给定一些点,一些卫星,一个卫星能连接两个点,点和点之间通信有一定的距离限制. 问能使得所有的点联通的最小距离. */ #include<stdio.h> ...
- ssh远程执行命令并自动退出(已测试通过)
转自:http://blog.csdn.net/fdipzone/article/details/23000201 ssh命令格式如下: usage: ssh [-1246AaCfgKkMNnqsTt ...
- Linux资源监控_Nmon
性能测试中,各个服务器资源占用统计分析是一个很重要的组成部分,通常我们使用nmon这个工具来进行监控以及监控结果输出. 一. 在监控阶段使用类似下面的命令 ./nmon -f write_3s_20v ...
- 使用Nginx+Keepalived组建高可用负载平衡Web server集群
一,首先说明一下网络拓扑结构: 1,Nginx 反向代理Server(HA): ①Nginx master:192.168.1.157 ②Nginx backup:192.168.1. ...
- 创业公司Playcafe关门大吉 创始人总结10大失败教训
导读:互联网电视游戏网站PlayCafe的创始人马克·高登森(Mark Goldenson)日前撰文,总结了自己创业失败的十个教训.以下为文章主要内容: 一年半前,我与公司联合创始人戴维·奈格(Dev ...