For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ converges. This is called the exponential of $A$. The matrix $A$ is always invertible and $$\bex (\exp A)^{-1}=\exp(-A). \eex$$ Conversely, every invertible matrix can be expressed as the exponential of some matrix. Every unitary matrix can be expressed as the exponential of a skew-Hermitian matrix.

Solution.

(1). $$\bex \exp A=\sum_{n=0}^\infty \frac{A^n}{n!} \eex$$ follows from the fact that $$\bex \sum_{n=0}^\infty \frac{\sen{A}^2}{n!}=\exp \sen{A}<\infty \eex$$ and the completeness of $\M(n)$.

(2). By taking limits in $$\beex \bea &\quad\sex{\sum_{k=0}^n\frac{A^k}{k!}} \cdot \sex{\sum_{l=0}^n \frac{B^l}{l!}}\quad\sex{AB=BA}\\ &=\sum_{k,l=0}^n \frac{A^kB^l}{k!l!}\\ &=\sum_{s=0}^{2n} \frac{1}{s!}\sum_{k+l=s}\frac{s!}{k!(s-k)!}A^kB^{s-k}\\ &=\sum_{s=0}^{2n}\frac{1}{s!}(A+B)^s, \eea \eeex$$ we have $$\bex \exp(A)\cdot \exp (B)=\exp(A+B). \eex$$ Taking $B=-A$, we see readily that $$\bex \exp(A)\cdot \exp(-A)=I. \eex$$

(3). For invertible matrix $A$, by theJordan canonical decomposition, there exists an unitary $U$ such that $$\bex A=U\diag(J_1,\cdots,J_s)U^*, \eex$$ with the diagonals $\lm_i$ of $J_i$ is not equal to zero. We only need to show that $J_i$ is the exponential of some matrix. In fact, set $\mu_i\in\bbC$ satisfy $e^{\mu_i}=\lm_i$ and $$\bex \vLm_i=\diag(\mu_i,\cdots,\mu_i), \eex$$ then its exponential $$\bex \exp \vLm_i=\diag(\lm_i,\cdots,\lm_i) \eex$$ has the same eigenvalues of $J_i$. Hence, they are similar, and there exists some invertible matrix $P_i$ such that $$\bex J_i=P_i^{-1}\exp \vLm_i P_i=\exp [P_i^{-1}\vLm_iP_i]. \eex$$

(4). For $U\in \U(n)$, $$\bex U=\exp B\ra I=U^*U=\exp (B^*)\cdot \exp (B)=\exp(B^*+B)\ra B^*=-B. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. easy ui datagrid在没有数据时显示相关提示内容

    $(function () { $('#dg').datagrid({ fitColumns: true, url: 'product.json', pagination: true, pageSiz ...

  2. iOS 通览(二)

    一.关键词 extern:C语言的函数外部声明. 如果你要在一个.c或者.m中使用另外一个.c文件的函数的话,需要在文件中写入目标函数的外部引用的声明. 二.自定义View 自定义View添加控件对象 ...

  3. mysql日志详细解析 [转]

    原文出处:http://pangge.blog.51cto.com/6013757/1319304 MySQL日志: 主要包含:错误日志.查询日志.慢查询日志.事务日志.二进制日志: 日志是mysql ...

  4. Code for the Homework2 改进

    1. 实现了到指定点各个关节的转角计算(多解性),并且所求解满足各个关节的最大角和最小角的限制条件. 2. 对方向向量进行了单位化,保证任意大小的向量都行 #include<iostream&g ...

  5. iPhone 7-b

    iPhone 7就要出了!据悉,苹果秋季新品发布会将于9月7日举行,大家来看看iPhone7的概念设计有多逆天. 新机一出,大家最关心的都是价格问题,那就一起看看大家关注的价格问题: 4.7寸的iPh ...

  6. collectionView代码创建

    @interface ViewController ()<UICollectionViewDataSource,UICollectionViewDelegateFlowLayout> @p ...

  7. bnuoj 31796 键盘上的蚂蚁(搜索模拟)

    http://www.bnuoj.com/bnuoj/contest_show.php?cid=2876#problem/31796 [题意]: 如题,注意大小写情况 [code]: #include ...

  8. 3.7 spring-property 子元素的使用与解析

    1.0 Property子元素的使用 property 子元素是再常用不过的了, 在看Spring源码之前,我们先看看它的使用方法, 1. 实例类如下: public class Animal { p ...

  9. The 9th Zhejiang Provincial Collegiate Programming Contest->Problem A:A - Taxi Fare

    Problem A: Taxi Fare Time Limit: 2 Seconds Memory Limit: 65536 KB Last September, Hangzhou raised th ...

  10. The 6th Zhejiang Provincial Collegiate Programming Contest->ProblemB:Light Bulb

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3203 题意:求影子的最长长度L; 当灯,人头和墙角成一条直线时(假设此时人 ...