https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=251

 Network 

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at mostN lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2
 
题目大意:
给你一个无向图,求其中割点的个数目。
输入数据
第一行一个 n 代表有 n 个点
接下来有多行,一直到读入一个 0,算整个地图的读入结束,再读入一个0,文件数据结束。
每行有第一个数字a,代表接下来的数字都 和 a 相连。 
 
 
割点:无向连通图中,如果删除某点后,图变成不连通了,则称该点为割点。
这里割点 和 桥 都是无向图里的概念,大家在这里不要混淆了。
 
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。  
即代码中rootson >1
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)   即代码中  if(dfn[v] <= low[i])   Cut[i] = true;
注:这里所说的树是指,DFS下的搜索树。
 
求割点 Tarjan里 low  和  dfn
dfn[u]定义和前面类似,但是low[u]定义为u
或者u的子树中能够通过非父子边追溯到的
最早的节点的DFS开始时间
在Tarjan算法求割点我们要加一个数组 f[u], 判断两者是否是父子边
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<vector>
#define N 110
#define min(a, b)(a < b ? a : b) using namespace std; vector<vector<int> >G;
int low[N], dfn[N], f[N];
int n, Time, num;
bool Cut[N]; void Init()
{
G.clear();
G.resize(n + );
memset(low, , sizeof(low));//最先到达该点的时间
memset(dfn, , sizeof(dfn));//该点能到达之前点的最早时间
memset(f, , sizeof(f));//保存一个点的父节点
memset(Cut, false, sizeof(Cut));//判断该是否为割点
Time = num = ;
} void Tarjan(int u, int fa)
{
int len, v, i;
low[u] = dfn[u] = ++Time;
f[u] = fa;
len = G[u].size();
for(i = ; i < len ; i++)
{
v = G[u][i];
if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(fa != v)
low[u] = min(low[u], dfn[v]);
}
} void Solve()
{
int rootson = , i, v;
Tarjan(, );
for(i = ; i<= n ; i++)
{
v = f[i];
if(v == )//i的父节点为根节点
rootson++;//子树
else if(dfn[v] <= low[i])
Cut[v] = true;
}
for(i = ; i <= n ; i++)
if(Cut[i])
num++;
if(rootson > )
num++;
} int main()
{
int a, b;
char ch;
while(scanf("%d", &n), n)
{
Init();
while(scanf("%d", &a), a)
{
while(scanf("%d%c", &b, &ch))
{
G[a].push_back(b);
G[b].push_back(a);
if(ch == '\n')
break;
}
}
Solve();
printf("%d\n", num);
}
return ;
}

uva 315 Network(无向图求割点)的更多相关文章

  1. UVA 315 315 - Network(求割点个数)

     Network  A Telephone Line Company (TLC) is establishing a new telephone cable network. They are con ...

  2. B - Network---UVA 315(无向图求割点)

        A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...

  3. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  4. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  5. 无向图求割点 UVA 315 Network

    输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...

  6. UVA - 315 Network(tarjan求割点的个数)

    题目链接:https://vjudge.net/contest/67418#problem/B 题意:给一个无向连通图,求出割点的数量.首先输入一个N(多实例,0结束),下面有不超过N行的数,每行的第 ...

  7. (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA315:Network(求割点)

    Network 题目链接:https://vjudge.net/problem/UVA-315 Description: A Telephone Line Company (TLC) is estab ...

  9. poj 1523"SPF"(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

随机推荐

  1. Android开发之“点9”

    “点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在 ...

  2. Eclipse中Python插件PyDev的安装与配置流程

    安装PyDev插件的两种安装方法: 方法1.下载地址:http://sourceforge.net/projects/pydev/files/,将下载的PyDev解压(目前最新版本 PyDev 4.5 ...

  3. CFF前端沙龙总结

    一. -OOCSS + Sass ——大漠 1. OOCSS 结构<=>皮肤 分离 容器<=>内容 分离 2. Sass 工具.处理器 SCSS(CSS风格)<=> ...

  4. poj 2777 Count Color(线段树 区间更新)

    题目:http://poj.org/problem?id=2777 区间更新,比点更新多一点内容, 详见注释,  参考了一下别人的博客.... 参考博客:http://www.2cto.com/kf/ ...

  5. iOS开发:记录开发中遇到的编译或运行异常以及解决方案

    1.部署到真机异常 dyld`dyld_fatal_error: ->  0x120015088 <+0>: brk    #0x3 dyld: Library not loaded ...

  6. 【 D3.js 高级系列 — 8.0 】 标线

    有时候,需要在地图上绘制连线,表示"从某处到某处"的意思,这种时候在地图上绘制的连线,称为"标线". 1. 标线是什么 标线,是指地图上需要两个坐标以上才能表示 ...

  7. apache开源项目--mina

    Apache MINA(Multipurpose Infrastructure for Network Applications) 是 Apache 组织一个较新的项目,它为开发高性能和高可用性的网络 ...

  8. TCP/IP详解学习笔记(12)-TCP的超时与重传

    超时重传是TCP协议保证数据可靠性的另一个重要机制,其原理是在发送某一个数据以后就开启一个计时器,在一定时间内如果没有得到发送的数据报的ACK报文,那么就重新发送数据,直到发送成功为止. 1.超时 超 ...

  9. C# C/S 结构操作Ini系统文件

    Winfrom 开发时,有时会将一些系统某个设置保存到Ini 类型的文件中.下面提供操作Ini 文件的代码: public static class IniFiles { [DllImport(&qu ...

  10. Linux如何统计进程的CPU利用率

    1.0 概述 在Linux的/proc文件系统,可以看到自启动时候开始,所有CPU消耗的时间片:对于个进程,也可以看到进程消耗的时间片.这是一个累计值,可以"非阻塞"的输出.获得一 ...