https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=251

 Network 

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at mostN lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2
 
题目大意:
给你一个无向图,求其中割点的个数目。
输入数据
第一行一个 n 代表有 n 个点
接下来有多行,一直到读入一个 0,算整个地图的读入结束,再读入一个0,文件数据结束。
每行有第一个数字a,代表接下来的数字都 和 a 相连。 
 
 
割点:无向连通图中,如果删除某点后,图变成不连通了,则称该点为割点。
这里割点 和 桥 都是无向图里的概念,大家在这里不要混淆了。
 
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。  
即代码中rootson >1
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)   即代码中  if(dfn[v] <= low[i])   Cut[i] = true;
注:这里所说的树是指,DFS下的搜索树。
 
求割点 Tarjan里 low  和  dfn
dfn[u]定义和前面类似,但是low[u]定义为u
或者u的子树中能够通过非父子边追溯到的
最早的节点的DFS开始时间
在Tarjan算法求割点我们要加一个数组 f[u], 判断两者是否是父子边
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<vector>
#define N 110
#define min(a, b)(a < b ? a : b) using namespace std; vector<vector<int> >G;
int low[N], dfn[N], f[N];
int n, Time, num;
bool Cut[N]; void Init()
{
G.clear();
G.resize(n + );
memset(low, , sizeof(low));//最先到达该点的时间
memset(dfn, , sizeof(dfn));//该点能到达之前点的最早时间
memset(f, , sizeof(f));//保存一个点的父节点
memset(Cut, false, sizeof(Cut));//判断该是否为割点
Time = num = ;
} void Tarjan(int u, int fa)
{
int len, v, i;
low[u] = dfn[u] = ++Time;
f[u] = fa;
len = G[u].size();
for(i = ; i < len ; i++)
{
v = G[u][i];
if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(fa != v)
low[u] = min(low[u], dfn[v]);
}
} void Solve()
{
int rootson = , i, v;
Tarjan(, );
for(i = ; i<= n ; i++)
{
v = f[i];
if(v == )//i的父节点为根节点
rootson++;//子树
else if(dfn[v] <= low[i])
Cut[v] = true;
}
for(i = ; i <= n ; i++)
if(Cut[i])
num++;
if(rootson > )
num++;
} int main()
{
int a, b;
char ch;
while(scanf("%d", &n), n)
{
Init();
while(scanf("%d", &a), a)
{
while(scanf("%d%c", &b, &ch))
{
G[a].push_back(b);
G[b].push_back(a);
if(ch == '\n')
break;
}
}
Solve();
printf("%d\n", num);
}
return ;
}

uva 315 Network(无向图求割点)的更多相关文章

  1. UVA 315 315 - Network(求割点个数)

     Network  A Telephone Line Company (TLC) is establishing a new telephone cable network. They are con ...

  2. B - Network---UVA 315(无向图求割点)

        A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...

  3. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  4. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  5. 无向图求割点 UVA 315 Network

    输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...

  6. UVA - 315 Network(tarjan求割点的个数)

    题目链接:https://vjudge.net/contest/67418#problem/B 题意:给一个无向连通图,求出割点的数量.首先输入一个N(多实例,0结束),下面有不超过N行的数,每行的第 ...

  7. (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA315:Network(求割点)

    Network 题目链接:https://vjudge.net/problem/UVA-315 Description: A Telephone Line Company (TLC) is estab ...

  9. poj 1523"SPF"(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

随机推荐

  1. Builder创建者模式

    http://www.codeproject.com/Articles/42415/Builder-Design-Pattern In Elizabeth's day care center, the ...

  2. windows2003 iis6.0站点打不开,找不到服务器或 DNS 错误。

    最近服务器经常出现打不开网站的现象,有时出现在上午,有时出现在中午,几乎天天都会出现一次,出现问题时,无论是回收程序池还是重启IIS或者关闭其它一些可能有影响的服务,都不能解决问题.网站打不开时,有如 ...

  3. 注册表删除chrome插件

    注册表,对于绝大部分人来说,都是一个比较陌生的东西.然而,我们的几乎所有软件都会在这里出现. 就最近一次,公司给每个员工的chrome浏览器绑定的一堆插件,并且无法删除.手动删除插件文件后,重启机器又 ...

  4. Oracle VM VirtualBox虚拟机安装系统

    作为一个前端,必须要有自己的虚拟机,用于测试 IE6 .IE7浏览器. 要测试这两个浏览器,必须要是 Windows XP 系统才可以,这里我找到两个纯净版的 xp 系统 iso 镜像文件. http ...

  5. 【Todo】深入理解Javascript系列

    真的很好,要看 http://www.cnblogs.com/TomXu/archive/2011/12/15/2288411.html

  6. LA 4127 - The Sky is the Limit (离散化 扫描线 几何模板)

    题目链接 非原创 原创地址:http://blog.csdn.net/jingqi814/article/details/26117241 题意:输入n座山的信息(山的横坐标,高度,山底宽度),计算他 ...

  7. uva 111 - History Grading (dp, LCS)

    题目链接 题意:给N,第二行是答案,n个数c1---cn, 代表第一个的顺序是c1,第二个数顺序是c2; 下面每一行是学生的答案,格式同上. 注意:这个给的顺序需要处理一下,不能直接用. 思路:LCS ...

  8. Codeforces Round #242 (Div. 2) C. Magic Formulas (位异或性质 找规律)

    题目 比赛的时候找出规律了,但是找的有点慢了,写代码的时候出了问题,也没交对,还掉分了.... 还是先总结一下位移或的性质吧: 1.  交换律 a ^ b = b ^ a 2. 结合律 (a^b) ^ ...

  9. hdu 1243 反恐训练营(dp 最大公共子序列变形)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1243 d[i][j] 代表第i 个字符与第 j 个字符的最大的得分.,, 最大公共子序列变形 #inclu ...

  10. Android布局详解之一:FrameLayout

      原创文章,如有转载,请注明出处:http://blog.csdn.net/yihui823/article/details/6702273 FrameLayout是最简单的布局了.所有放在布局里的 ...