Cow Acrobats
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2302   Accepted: 912

Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.

* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

Source

 
按照w + s从小到大排序,证明的思想假如是任意一个排列,进行类似冒泡的操作就可以不断的减少最大值
 
 #include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define maxn 50005 #define INF (1 << 30) struct node {
int w,s;
}; node s[maxn];
int n; bool cmp(node a,node b) {
return (a.w + a.s) < (b.w + b.s);
} int main() { scanf("%d",&n);
for(int i = ; i <= n; ++i) {
scanf("%d%d",&s[i].w,&s[i].s);
} sort(s + ,s + n + ,cmp); int now = ,ans = -INF ;
for(int i = ; i <= n; ++i) {
ans = max(ans,now - s[i].s);
now += s[i].w;
} printf("%d\n",ans); return ; }

POJ 3045的更多相关文章

  1. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

  2. Greedy:Cow Acrobats(POJ 3045)

    牛杂技团 题目大意:一群牛想逃跑,他们想通过搭牛梯来通过,现在定义risk(注意可是负的)为当前牛上面的牛的总重量-当前牛的strength,问应该怎么排列才能使risk最小? 说实话这道题我一开始给 ...

  3. poj 3045 Cow Acrobats(二分搜索?)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  4. POJ 3045 Cow Acrobats

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  5. POJ - 3045 Cow Acrobats (二分,或者贪心)

    一开始是往二分上去想的,如果risk是x,题目要求则可以转化为一个不等式,Si + x >= sigma Wj ,j表示安排在i号牛上面的牛的编号. 如果考虑最下面的牛那么就可以写成 Si + ...

  6. poj 3045 叠罗汉问题 贪心算法

    题意:将n头牛叠起来,每头牛的力气 s体重 w  倒下的风险是身上的牛的体重的和减去s 求最稳的罗汉倒下去风险的最大值 思路: 将s+w最大的放在下面,从上往下看 解决问题的代码: #include& ...

  7. POJ 3045 Cow Acrobats (最大化最小值)

    题目链接:click here~~ [题目大意] 给你n头牛叠罗汉.每头都有自己的重量w和力量s,承受的风险数rank就是该牛上面全部牛的总重量减去该牛自身的力量,题目要求设计一个方案使得全部牛里面风 ...

  8. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  9. POJ 2456 3258 3273 3104 3045(二分搜索-最大化最小值)

    POJ 2456 题意 农夫约翰有N间牛舍排在一条直线上,第i号牛舍在xi的位置,其中有C头牛对牛舍不满意,因此经常相互攻击.需要将这C头牛放在离其他牛尽可能远的牛舍,也就是求最大化最近两头牛之间的距 ...

随机推荐

  1. 同一个tomcat多个web应用共享session

    tomcat版本:apache-tomcat-6.0.29(次方tomcat6和tomcat7支持)   1.修改D:\apache-tomcat-6.0.29\conf\server.xml文件   ...

  2. ZigBee profile

        每个ZigBee设备都与一个特定模板相关联,可能是公共模板或私有模板.这些模板定义了设备的应用环境.设备类型以及用于设备间通信的簇.采用公共模板,可以确保不同供应商的设备在相同应用领域的互操作 ...

  3. (栈)栈 给定push序列,判断给定序列是否是pop序列

    题目: 输入两个整数序列.其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序.为了简单起见,我们假设push序列的任意两个整数都是不相等的. 比如输入的push序列是1.2. ...

  4. EF6数据迁移

    当Moldes发生改变时 会提示数据上下文的模型已在数据库创建后发生改变,则需要重建数据库并数据迁移 在NuGet程序包管理控制台输入enable-migrations启用数据迁移 之后会提示&quo ...

  5. WP开发笔记——日期时间DateTime.Now函数

    //2008年4月24日 System.DateTime.Now.ToString("D"); //2008-4-24 System.DateTime.Now.ToString(& ...

  6. DevExpress12.2.6 安装顺序记录

    环境DelphiXE,实测DevExpress手工安装顺序: 1.ExpressCore Library 2.XP Theme Manager 3.ExpressGDI+ Library 4.Expr ...

  7. java dom4j解析xml用到的几个方法

    1. 读取并解析XML文档: SAXReader reader = new SAXReader(); Document document = reader.read(new File(fileName ...

  8. IO流的异常处理

    在IO流的异常处理时应该注意以下几点: 1.在外边建立引用,在Try内进行初始化(FileWriter fw = null;) 2.文件的路径使用必须是双斜杠,转义(fw = new FileWrit ...

  9. 【转载】MySQL被慢sql hang住了,用shell脚本快速清除不断增长的慢sql的办法

    原文地址:MySQL被慢sql hang住了,用shell脚本快速清除不断增长的慢sql的办法 作者:mchdba 某个初级dba误删index,mysql漫山遍野全是10S以上的慢sql,mysql ...

  10. 设计模式之单例模式(Singleton Pattern)

    单例模式 单例模式(Singleton Pattern)在java中算是最常用的设计模式之一,主要用于控制控制类实例的数量,防止外部实例化或者修改.单例模式在某些场景下可以提高系统运行效率.实现中的主 ...