BZOJ2500: 幸福的道路
题解:
一道不错的题目。
树DP可以求出从每个点出发的最长链,复杂度O(n)
然后就变成找一个数列里最长的连续区间使得最大值-最小值<=m了。
成了这题:http://www.cnblogs.com/zyfzyf/p/4008295.html
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 1000000+5 #define maxm 20000000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y;i;i=e[i].next) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
struct edge{int go,next;ll w;}e[*maxn];
int n,tot,q[maxn][],l[],r[],head[maxn];
ll m,f[maxn],g[maxn][],a[maxn];
inline void insert(int x,int y,ll z)
{
e[++tot]=(edge){y,head[x],z};head[x]=tot;
}
inline void down(int x)
{
for4(i,x)
{
down(y=e[i].go);
if(g[y][]+e[i].w>g[x][])g[x][]=g[x][],g[x][]=g[y][]+e[i].w;
else g[x][]=max(g[x][],g[y][]+e[i].w);
}
}
inline void up(int x)
{
for4(i,x)
{
f[y=e[i].go]=f[x]+e[i].w;
if(g[y][]+e[i].w==g[x][])f[y]=max(f[y],g[x][]+e[i].w);
else f[y]=max(f[y],g[x][]+e[i].w);
up(y);
}
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();m=read();
for2(i,,n){int x=read(),y=read();insert(x,i,y);}
down();up();
for1(i,n)a[i]=max(f[i],g[i][]);
l[]=l[]=;r[]=r[]=;
int ret=,ans=;
for1(i,n)
{
while(l[]<=r[]&&a[i]<=a[q[r[]][]])r[]--;
q[++r[]][]=i;
while(l[]<=r[]&&a[i]>=a[q[r[]][]])r[]--;
q[++r[]][]=i;
while(a[q[l[]][]]-a[q[l[]][]]>m)
ret=q[l[]][]<q[l[]][]?q[l[]++][]+:q[l[]++][]+;
ans=max(ans,i-ret+);
}
cout<<ans<<endl; return ; }
2500: 幸福的道路
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 113 Solved: 49
[Submit][Status]
Description
后顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……).
而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).
Input
Output
Sample Input
1 1
1 3
Sample Output
数据范围:
50%的数据N<=1000
80%的数据N<=100 000
100%的数据N<=1000 000
BZOJ2500: 幸福的道路的更多相关文章
- bzoj2500幸福的道路 树形dp+单调队列
2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 434 Solved: 170[Submit][Status][Discuss ...
- [Bzoj2500]幸福的道路(树上最远点)
2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 474 Solved: 194[Submit][Status][Discuss ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法
[BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...
- 【BZOJ】【2500】幸福的道路
树形DP+单调队列优化DP 好题(也是神题……玛雅我实在是太弱了TAT,真是一个250) 完全是抄的zyf的……orz我还是退OI保平安吧 第一步对于每一天求出一个从第 i 个点出发走出去的最长链的长 ...
- [BZOJ 2500] 幸福的道路
照例先贴题面(汪汪汪) 2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 368 Solved: 145[Submit][Sta ...
- 【bzoj2500】幸福的道路 树形dp+单调队列
Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...
- 【bzoj2500】幸福的道路 树形dp+倍增RMQ+二分
原文地址:http://www.cnblogs.com/GXZlegend/p/6825389.html 题目描述 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一 ...
- (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列
Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...
随机推荐
- ADO和ADO.NET的区别
1. ADO与ADO.NET简介 ADO与ADO.NET既有相似也有区别,他们都能够编写对数据库服务器中的数据进行访问和操作的应用程序,并且易于使用.高速度.低内存支出和占用磁盘空间较少,支持用于建立 ...
- WPF中利用DynamicDataDisplay快速实现示波器功能
DynamicDataDisplay控件是一个功能很强的绘图工具,除了能生成曲线外,还有很多其他功能,具体见http://dynamicdatadisplay.codeplex.com/.这里你也能下 ...
- cron服务 ubuntu
linux 定时执行crontab crontab -e 进入一个vi 编辑界面 在最后一行加上 */30 * * * * netstat > /tmp/net.log 表示每隔30分就执行n ...
- oracle 多条执行语句同时执行
oracle 多条执行语句同时执行:begin 语名一;语句二; end; 注意 如果写在C#里千万不要用@的方法然后语句里有回车 例: string strSql = "begin upd ...
- WPF常用数据绑定控件集合
1.怎么用ListView控件把XML中的数据在界面上显示出来? <?xml version="1.0" encoding="utf-8" ?> & ...
- (转)汇编bne的问题
网址:http://blog.csdn.net/lwj103862095/article/details/8073571 memsetup: @ 设置存储控制器以便使用SDRAM等外设 mov ...
- Automotive Security的一些资料和心得(1):Security Engineering
陆续更新一些最近在Automotive Security方面的资料和心得. 1. Overview 1.1. Software Engineering Process PLC-Phases: Intr ...
- [转]深度理解依赖注入(Dependence Injection)
http://www.cnblogs.com/xingyukun/archive/2007/10/20/931331.html 前面的话:提到依赖注入,大家都会想到老马那篇经典的文章.其实,本文就是相 ...
- 1048: [HAOI2007]分割矩阵 - BZOJ
Description 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n-1)次后,原矩阵被分割成了 ...
- Extjs-4.2.1(二)——使用Ext.define自定义类
鸣谢:http://www.cnblogs.com/youring2/archive/2013/08/22/3274135.html --------------------------------- ...