【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves
Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.
To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.
The new function F(x) is defined as follow:
F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.
Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
Input
The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
Output
For each test case, output the answer in a line. Round to 4 digits after the decimal point.
Sample Input
2
1
2 0 0
2
2 0 0
2 -4 2
Sample Output
0.0000
0.5000 题意:给出n条二次曲线S(x) = ax2 + bx + c(a >= 0, 0 <= x <= 1000),定义F(x)=max{Si(x)},即F(x)为取x值时n条二次曲线对应值的最大值;则你需要求出x在[0, 1000]范围内F(x)值的最小值; 分析:x在[0,1000]范围内所有F(x)值可以连成一条曲线。由于每条二次曲线S(x)都是下凸单峰函数,则F(x)=max{Si(x)}的曲线也是下凸单峰。对于单峰函数求极值,一般选用三分搜索算法。 所谓三分:把区间分为长度相等的三段进行查找,称为三分查找,三分查找通常用来迅速确定最值。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-;
const int maxn = ;
int a[maxn], b[maxn], c[maxn];
int n; double F(double x)
{
double ans = a[]*x*x + b[]*x + c[];
for(int i = ; i < n; i++)
{
ans = max(ans, a[i]*x*x + b[i]*x + c[i]);
}
return ans;
} void Ternary_Search()
{
double L = 0.0, R = 1000.0;
for(int i = ; i < ; i++)
{
double m1 = L+(R-L)/;
double m2 = R-(R-L)/; if(F(m1) < F(m2)) R = m2;
else L = m1;
}
printf("%.4lf\n", F(L));
}
int main()
{ int T; scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%d%d%d", &a[i], &b[i], &c[i]); Ternary_Search();
}
return ;
}
【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves的更多相关文章
- UVA 1476 - Error Curves(三分法)
UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...
- UVA - 1476 Error Curves 三分
Error Curves Josephina is a clever girl and addicted to Machi ...
- uva 1476 - Error Curves
对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...
- UVA 5009 Error Curves
Problem Description Josephina is a clever girl and addicted to Machine Learning recently. She pays m ...
- 【三分搜索算法】UVa 10385 - Duathlon
题目链接 题意:“铁人三项”比赛中,需要选手在t km的路程里进行马拉松和骑自行车项目.现有n名选手,每位选手具有不同的跑步速度和骑车速度.其中第n位选手贿赂了裁判员,裁判员保证第n名选手一定会取得冠 ...
- LA 5009 (HDU 3714) Error Curves (三分)
Error Curves Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu SubmitStatusPr ...
- hdu 3714 Error Curves(三分)
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tot ...
- 三分 HDOJ 3714 Error Curves
题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...
- HDU-3714 Error Curves(凸函数求极值)
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
随机推荐
- Xcode 的正确打开方式——Debugging
程序员日常开发中有大量时间都会花费在 debug 上,从事 iOS 开发不可避免地需要使用 Xcode.这篇博客就主要介绍了 Xcode 中几种能够大幅提升代码调试效率的方式. “If debuggi ...
- oracle中in与exists的区别
exists是用来判断是否存在的,当exists中的查询存在结果时则返回真,否则返回假.not exists则相反. exists做为where 条件时,是先对where 前的主查询询进行查询,然后用 ...
- Linux查看物理内存信息
Linux查看物理内存信息 1. 查看内存大小 dmidecode|grep Size 输出 Runtime Size: 64 kB ROM Size: 4608 kB Installed Size: ...
- linux中vi编辑器
vi编辑器,通常称之为vi,是一种广泛存在于各种UNIX和Linux系 统中的文本编辑程序.它的功能十分强大,但是命令繁多,不容易掌握,它可以执行输出.删除.查找.替换.块操作等众多文本操作,而且用户 ...
- KVM学习笔记
检查机器是否启用KVM lsmod |grep kvm 安装KVM yum install libvirt python-virtinst qemu-kvm virt-viewer bridge-ut ...
- type=INNODB和engine=INNODB的区别
我在网站下载了一份源码,学习中, 发现type=INNODB,这个数据库引擎老实出错,,后来才一查资料才是: 在MYSQL5.5及以后版本中type=InnoDB 由ENGINE=InnoDB 代替. ...
- 简单http笔记
https是以安全为目的的网络传输协议,可以认为是http的安全版,https使用ssl协议保证安全传输.https位于网络模型的应用层,使用默认端口443进行通信,URL以https开头是https ...
- Java中字符串相等与大小比较
国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html 内部邀请码:C8E245J (不写邀请码,没有现金送) 国 ...
- 安装Loopback网卡/回环网卡
$CurrentPath = $MyInvocation.MyCommand.Path.substring(0,$MyInvocation.MyCommand.Path.LastIndexOf('\' ...
- PI-安装SoapUI on Windows
SoapUI是测试webservice连通性的工具,请见博文:http://www.dekevin.com/?p=1807 当你下载好了SOAPUI的安装程序之后,就可以进行程序的安装了,怎么来进行S ...