Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

The new function F(x) is defined as follow:

F(x) = max(Si(x))i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

Input

The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

Output

For each test case, output the answer in a line. Round to 4 digits after the decimal point.

Sample Input

2
1
2 0 0
2
2 0 0
2 -4 2

Sample Output

0.0000
0.5000 题意:给出n条二次曲线S(x) = ax2 + bx + c(a >= 0, 0 <= x <= 1000),定义F(x)=max{Si(x)},即F(x)为取x值时n条二次曲线对应值的最大值;则你需要求出x在[0, 1000]范围内F(x)值的最小值; 分析:x在[0,1000]范围内所有F(x)值可以连成一条曲线。由于每条二次曲线S(x)都是下凸单峰函数,则F(x)=max{Si(x)}的曲线也是下凸单峰。对于单峰函数求极值,一般选用三分搜索算法。 所谓三分:把区间分为长度相等的三段进行查找,称为三分查找,三分查找通常用来迅速确定最值。
 众所周知,二分算法的要求是搜索的序列是单调序列,而三分法所面向的搜索序列的要求是:序列为一个凸性函数。
 
 
 
 与二分法类似,三分算法先把区间分为长度相等的三段,那么L与R之间就有两个点,分别是:m1=L+(R-L)/3; m2=R-(R-L)/3;
 
 如果m1比m2更靠近最值,我们就舍弃右区间,否则我们舍弃左区间。
 
 代码如下:
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-;
const int maxn = ;
int a[maxn], b[maxn], c[maxn];
int n; double F(double x)
{
double ans = a[]*x*x + b[]*x + c[];
for(int i = ; i < n; i++)
{
ans = max(ans, a[i]*x*x + b[i]*x + c[i]);
}
return ans;
} void Ternary_Search()
{
double L = 0.0, R = 1000.0;
for(int i = ; i < ; i++)
{
double m1 = L+(R-L)/;
double m2 = R-(R-L)/; if(F(m1) < F(m2)) R = m2;
else L = m1;
}
printf("%.4lf\n", F(L));
}
int main()
{ int T; scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%d%d%d", &a[i], &b[i], &c[i]); Ternary_Search();
}
return ;
}

【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves的更多相关文章

  1. UVA 1476 - Error Curves(三分法)

    UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...

  2. UVA - 1476 Error Curves 三分

                                           Error Curves Josephina is a clever girl and addicted to Machi ...

  3. uva 1476 - Error Curves

    对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...

  4. UVA 5009 Error Curves

    Problem Description Josephina is a clever girl and addicted to Machine Learning recently. She pays m ...

  5. 【三分搜索算法】UVa 10385 - Duathlon

    题目链接 题意:“铁人三项”比赛中,需要选手在t km的路程里进行马拉松和骑自行车项目.现有n名选手,每位选手具有不同的跑步速度和骑车速度.其中第n位选手贿赂了裁判员,裁判员保证第n名选手一定会取得冠 ...

  6. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  7. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  8. 三分 HDOJ 3714 Error Curves

    题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...

  9. HDU-3714 Error Curves(凸函数求极值)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. TTL电平、CMOS电平、RS232电平的区别

    工作中遇到一个关于电平选择的问题,居然给忘记RS232电平的定义了,当时无法反应上来,回来之后查找资料才了解两者之间的区别,视乎两年多的时间,之前非常熟悉的一些常识也开始淡忘,这个可不是一个好的现象. ...

  2. Java虚拟机学习 - 体系结构 内存模型

    一:Java技术体系模块图 二:JVM内存区域模型 1.方法区 也称"永久代” .“非堆”, 它用于存储虚拟机加载的类信息.常量.静态变量.是各个线程共享的内存区域.默认最小值为16MB,最 ...

  3. ActiveMQ JMS 在发邮件中的使用

    ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久 ...

  4. C#学习笔记(十二):正则表达式

    Regex 正则表达式的类,我们可以通过该类来使用正则表达式. 比如下面我们使用Regex来判断输入的字符串是否符合指定的格式: using System; using System.Text.Reg ...

  5. Display:Block

    根据CSS规范的规定,每一个网页元素都有一个display属性,用于确定该元素的类型,每一个元素都有默认的display属性值,比如div元素,它的默认display属性值为“block”,成为“块级 ...

  6. VMware的“桥接”、“NAT”、“Host-only”上网方式的区别

    http://liblog.littleyuan.com/archives/9 在说到VMware的网络模型之前,先说一下VMware的几个虚拟设备: VMnet0:这是VMware用于虚拟桥接网络下 ...

  7. pod install warning

    warning: Insecure world writable dir /usr/local/bin in PATH, mode 040777 解决方法: sudo chmod 775 /usr/l ...

  8. 【转】Ruby入门教程(一)

    1. Ruby环境搭建 在Windows下,搭建Ruby环境,比较简单的方法是在“RubyInstaller”上下载一个合适的版本(D瓜哥使用的是最新版),直接安装就可以了. 另外,吐槽两句,网上有人 ...

  9. iOS开发笔记系列-基础5(分类和协议)

    分类 在Objective-C中,除了通过新建子类的方式来向类添加新方法外,还可以通过分类的方式.分类提供了一种简单的方式,将类的定义模块化到相关方法的组或分类中,它还提供了扩展现有类定义的简便方式, ...

  10. HDU 5235 Friends (2015 Multi-University Training Contest 2 搜索+剪枝)

    题目链接:pid=5305">传送门 题意: n个人给定m个关系.每一个关系为x,y表示x,y是朋友.可是可能是online friends,也可能是offline friends. ...