Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

The new function F(x) is defined as follow:

F(x) = max(Si(x))i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

Input

The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

Output

For each test case, output the answer in a line. Round to 4 digits after the decimal point.

Sample Input

2
1
2 0 0
2
2 0 0
2 -4 2

Sample Output

0.0000
0.5000 题意:给出n条二次曲线S(x) = ax2 + bx + c(a >= 0, 0 <= x <= 1000),定义F(x)=max{Si(x)},即F(x)为取x值时n条二次曲线对应值的最大值;则你需要求出x在[0, 1000]范围内F(x)值的最小值; 分析:x在[0,1000]范围内所有F(x)值可以连成一条曲线。由于每条二次曲线S(x)都是下凸单峰函数,则F(x)=max{Si(x)}的曲线也是下凸单峰。对于单峰函数求极值,一般选用三分搜索算法。 所谓三分:把区间分为长度相等的三段进行查找,称为三分查找,三分查找通常用来迅速确定最值。
 众所周知,二分算法的要求是搜索的序列是单调序列,而三分法所面向的搜索序列的要求是:序列为一个凸性函数。
 
 
 
 与二分法类似,三分算法先把区间分为长度相等的三段,那么L与R之间就有两个点,分别是:m1=L+(R-L)/3; m2=R-(R-L)/3;
 
 如果m1比m2更靠近最值,我们就舍弃右区间,否则我们舍弃左区间。
 
 代码如下:
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-;
const int maxn = ;
int a[maxn], b[maxn], c[maxn];
int n; double F(double x)
{
double ans = a[]*x*x + b[]*x + c[];
for(int i = ; i < n; i++)
{
ans = max(ans, a[i]*x*x + b[i]*x + c[i]);
}
return ans;
} void Ternary_Search()
{
double L = 0.0, R = 1000.0;
for(int i = ; i < ; i++)
{
double m1 = L+(R-L)/;
double m2 = R-(R-L)/; if(F(m1) < F(m2)) R = m2;
else L = m1;
}
printf("%.4lf\n", F(L));
}
int main()
{ int T; scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%d%d%d", &a[i], &b[i], &c[i]); Ternary_Search();
}
return ;
}

【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves的更多相关文章

  1. UVA 1476 - Error Curves(三分法)

    UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...

  2. UVA - 1476 Error Curves 三分

                                           Error Curves Josephina is a clever girl and addicted to Machi ...

  3. uva 1476 - Error Curves

    对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...

  4. UVA 5009 Error Curves

    Problem Description Josephina is a clever girl and addicted to Machine Learning recently. She pays m ...

  5. 【三分搜索算法】UVa 10385 - Duathlon

    题目链接 题意:“铁人三项”比赛中,需要选手在t km的路程里进行马拉松和骑自行车项目.现有n名选手,每位选手具有不同的跑步速度和骑车速度.其中第n位选手贿赂了裁判员,裁判员保证第n名选手一定会取得冠 ...

  6. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  7. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  8. 三分 HDOJ 3714 Error Curves

    题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...

  9. HDU-3714 Error Curves(凸函数求极值)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. Web Service学习之二:Web Service(for JAVA)的几种框架

    在讲Web Service开发服务时,需要介绍一个目前开发Web Service的几个框架,分别为Axis,axis2,Xfire,CXF以及JWS(也就是前面所述的JAX-WS,这是Java6发布所 ...

  2. Spring入门(1)-第一个Spring项目

    1. 创建maven项目,maven相关配置如下: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi= ...

  3. 自定义控件和XControl控件

    (1)LabVIEW的自定义控件,实际上就是对LabVIEW自带的控件的一种修改,但是这种修改只能改变它的外观,即大小.颜色.位置等等,但是功能是改变不了的.如你对一个按钮进行自定义控件,无论怎么改, ...

  4. JavaIO(04)字符流--Writer and Reader

    字符流:   常识:在java中一个字符等于两个字节:   操作字符流的两个类:Writer,Reader   API文档介绍(Writer): public abstract class Write ...

  5. [MAC OSX - 1] OSX10.10不能安装JKD8,不能使用eclipse

    (1)电脑升级为10.10后,打开eclipse总是提示"您需要安装旧 Java SE 6 运行环境才能打开"Eclipse". 解决:安装JKD   (2)不能安装JK ...

  6. Linux下常用的shell命令记录

     硬件篇 CPU相关 lscpu #查看的是cpu的统计信息. cat /proc/cpuinfo #查看CPU信息详细信息,如每个CPU的型号,主频等 内存相关 free -m #概要查看内存情况 ...

  7. oracle 的rowid和rownum

    rowid就是唯一标志记录物理位置的一个id,对于rownum来说它是oracle系统顺序分配为从查询返回的行的编号,返回的第一行分配的是1,第二行是2,依此类推,这个伪字段可以用于限制查询返回的总行 ...

  8. UVa 11971 Polygon (数学,转化)

    题意:一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率. 析:这个题,很明显和 n 是没有任何关系的,因为无论 n 是多少那切多少段都可以,只与切多少段有 ...

  9. 工具栏停靠实现(toolbar docking)

    // TODO: 如果不需要工具栏可停靠,则删除这三行 m_ToolBar_File.EnableDocking(CBRS_ALIGN_ANY); EnableDocking(CBRS_ALIGN_A ...

  10. WinForm中的DataGridView控件显示数据字典方案2

    winform代码分析object数据库 做这部分功能的时候,上网搜索了很多资料,发现很少涉及到这方面的解决方案,找了相关的问题帖子,很多人都叫使用视图去处理,当然,用视图是可以解决这个问题,但是,这 ...