MongoDB stores data records as BSON documents. BSON is a binary representation of JSON documents, though it contains more data types than JSON. For the BSON spec, see bsonspec.org. See also BSON Types.

Document Structure

MongoDB documents are composed of field-and-value pairs and have the following structure:

{
field1: value1,
field2: value2,
field3: value3,
...
fieldN: valueN
}

The value of a field can be any of the BSON data types, including other documents, arrays, and arrays of documents. For example, the following document contains values of varying types:

var mydoc = {
_id: ObjectId("5099803df3f4948bd2f98391"),
name: { first: "Alan", last: "Turing" },
birth: new Date('Jun 23, 1912'),
death: new Date('Jun 07, 1954'),
contribs: [ "Turing machine", "Turing test", "Turingery" ],
views : NumberLong(1250000)
}

The above fields have the following data types:

  • _id holds an ObjectId.
  • name holds an embedded document that contains the fields first and last.
  • birth and death hold values of the Date type.
  • contribs holds an array of strings.
  • views holds a value of the NumberLong type.

Field Names

Field names are strings.

Documents have the following restrictions on field names:

  • The field name _id is reserved for use as a primary key; its value must be unique in the collection, is immutable, and may be of any type other than an array.
  • The field names cannot start with the dollar sign ($) character.
  • The field names cannot contain the dot (.) character.
  • The field names cannot contain the null character.

BSON documents may have more than one field with the same name. Most MongoDB interfaces, however, represent MongoDB with a structure (e.g. a hash table) that does not support duplicate field names. If you need to manipulate documents that have more than one field with the same name, see the driver documentation for your driver.

Some documents created by internal MongoDB processes may have duplicate fields, but no MongoDB process will ever add duplicate fields to an existing user document.

Field Value Limit

For indexed collections, the values for the indexed fields have a Maximum Index Key Length limit. See Maximum Index Key Length for details.

Dot Notation

MongoDB uses the dot notation to access the elements of an array and to access the fields of an embedded document.

Arrays

To specify or access an element of an array by the zero-based index position, concatenate the array name with the dot (.) and zero-based index position, and enclose in quotes:

"<array>.<index>"

For example, given the following field in a document:

{
...
contribs: [ "Turing machine", "Turing test", "Turingery" ],
...
}

To specify the third element in the contribs array, use the dot notation "contribs.2".

SEE ALSO: 

  • $ positional operator for update operations,
  • $ projection operator when array index position is unknown
  • Query on Arrays for dot notation examples with arrays.

Embedded Documents

To specify or access a field of an embedded document with dot notation, concatenate the embedded document name with the dot (.) and the field name, and enclose in quotes:

"<embedded document>.<field>"

For example, given the following field in a document:

{
...
name: { first: "Alan", last: "Turing" },
contact: { phone: { type: "cell", number: "111-222-3333" } },
...
}
  • To specify the field named last in the name field, use the dot notation "name.last".
  • To specify the number in the phone document in the contact field, use the dot notation "contact.phone.number".

SEE ALSO: Query on Embedded Documents for dot notation examples with embedded documents.

Document Limitations

Documents have the following attributes:

Document Size Limit

The maximum BSON document size is 16 megabytes.

The maximum document size helps ensure that a single document cannot use excessive amount of RAM or, during transmission, excessive amount of bandwidth. To store documents larger than the maximum size, MongoDB provides the GridFS API. See mongofiles and the documentation for your driver for more information about GridFS.

Document Field Order

MongoDB preserves the order of the document fields following write operations except for the following cases:

  • The _id field is always the first field in the document.
  • Updates that include renaming of field names may result in the reordering of fields in the document.

Changed in version 2.6: Starting in version 2.6, MongoDB actively attempts to preserve the field order in a document. Before version 2.6, MongoDB did not actively preserve the order of the fields in a document.

The _id Field

In MongoDB, each document stored in a collection requires a unique _id field that acts as a primary key. If an inserted document omits the _id field, the MongoDB driver automatically generates an ObjectId for the _id field.

This also applies to documents inserted through update operations with upsert: true.

The _id field has the following behavior and constraints:

  • By default, MongoDB creates a unique index on the _id field during the creation of a collection.

  • The _id field is always the first field in the documents. If the server receives a document that does not have the _id field first, then the server will move the field to the beginning.

  • The _id field may contain values of any BSON data type, other than an array.

WARNING: To ensure functioning replication, do not store values that are of the BSON regular expression type in the _id field.

The following are common options for storing values for _id:

  • Use an ObjectId.

  • Use a natural unique identifier, if available. This saves space and avoids an additional index.

  • Generate an auto-incrementing number.

  • Generate a UUID in your application code. For a more efficient storage of the UUID values in the collection and in the _id index, store the UUID as a value of the BSON BinData type.

    Index keys that are of the BinData type are more efficiently stored in the index if:

    • the binary subtype value is in the range of 0-7 or 128-135, and
    • the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, or 32.
  • Use your driver’s BSON UUID facility to generate UUIDs. Be aware that driver implementations may implement UUID serialization and deserialization logic differently, which may not be fully compatible with other drivers. See your driver documentation for information concerning UUID interoperability.

NOTE: Most MongoDB driver clients will include the _id field and generate an ObjectId before sending the insert operation to MongoDB; however, if the client sends a document without an _id field, the mongod will add the _id field and generate the ObjectId.

Other Uses of the Document Structure

In addition to defining data records, MongoDB uses the document structure throughout, including but not limited to: query filtersupdate specifications documents, and index specification documents

Query Filter Documents

Query filter documents specify the conditions that determine which records to select for read, update, and delete operations.

You can use <field>:<value> expressions to specify the equality condition and query operator expressions.

{
<field1>: <value1>,
<field2>: { <operator>: <value> },
...
}

For examples, see Query filters or specifications.

Update Specification Documents

Update specification documents use update operators to specify the data modifications to perform on specific fields during an db.collection.update() operation.

{
<operator1>: { <field1>: <value1>, ... },
<operator2>: { <field2>: <value2>, ... },
...
}

For examples, see Update specifications.

Index Specification Documents

Index specifications document define the field to index and the index type:

{ <field1>: <type1>, <field2>: <type2>, ...  }

MongoDB - Introduction to MongoDB, Documents的更多相关文章

  1. MongoDB - Introduction to MongoDB, Capped Collections

    Overview Capped collections are fixed-size collections that support high-throughput operations that ...

  2. MongoDB - Introduction to MongoDB, MongoDB Extended JSON

    JSON can only represent a subset of the types supported by BSON. To preserve type information, Mongo ...

  3. MongoDB - Introduction to MongoDB

    MongoDB is an open-source document database that provides high performance, high availability, and a ...

  4. MongoDB - Introduction to MongoDB, BSON Types

    BSON is a binary serialization format used to store documents and make remote procedure calls in Mon ...

  5. MongoDB - Introduction to MongoDB, Databases and Collections

    MongoDB stores BSON documents, i.e. data records, in collections; the collections in databases. Data ...

  6. mongoDB & Nodejs 访问mongoDB (一)

    最近的毕设需要用到mongoDB数据库,又把它拿出来再学一学,下盘并不是很稳,所以做一些笔记,不然又忘啦. 安装 mongoDB & mongoVUE mongoDB: https://www ...

  7. java操作mongodb & springboot整合mongodb

    简单的研究原生API操作MongoDB以及封装的工具类操作,最后也会研究整合spring之后作为dao层的完整的操作. 1.原生的API操作 pom.xml <!-- https://mvnre ...

  8. mongoDB操作命令及mongoDB的helper

    此项目已开源,开源地址是: http://mongodbhelper-csharp.googlecode.com/svn/trunk/ mongodb的helper using System; usi ...

  9. mongodb系列之--mongodb 主从配置与说明

    一.为什么要配置mongodb的主从: 1.做主从,可以说是做数据的备份,有利于故障的恢复 2.做主从,可以做到读写分离,主节点负责写操作,从节点负责读操作,这样就把读写压力分开,保证系统的稳定性. ...

随机推荐

  1. disque概要

    做项目过程接触到disque,记录一下. disque是redis之父开源的基于内存的分布式作业队列,用c语言实现的非阻塞网络服务器. disque的设计目标:Its goal is to captu ...

  2. windows下实现微秒级的延时

    windowsintegeriostream汇编嵌入式任务 最近正在做一个嵌入式系统,是基于windows ce的,外接硬件的时序要微秒级的延时.1.微秒级的延时肯定不能基于消息(SetTimer函数 ...

  3. UVa10050 Hartals

    // 题意:输入n和p个整数H[i],其中H[i]表示每H[i]天会有一次活动(但周五周六除外).输出前n天中有多少天有活动.模拟从周日开始.   #include<cstdio> #in ...

  4. C#开发的WebService使用JSON格式传递数据+Ajax测试

    [C#]  WebService 使用 JSON 格式傳遞筆記 + JQuery 測試 0 2 因為一些因素,必須改寫WebService,很傳統,但是很多公司還在用.. 因為XML 的關係,不想讓他 ...

  5. Chrome插件开发 尝试2

    在文章1中 尝试了开发chrome一个蛋疼的插件,而且必须要写 一坨令人费解的代码才能只能,今天来次清爽的开发:如图: 这是 "清爽模式" →_→ 我把popup.html与pop ...

  6. 杭电 2034 人见人爱A-B

    http://acm.hdu.edu.cn/showproblem.php?pid=2034 人见人爱A-B Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  7. Oracle DB 通过 Oracle Enterprise Manager注册要使用的恢复目录

    通过 Oracle Enterprise Manager  注册要使用的恢复目录.  a)  在 EM 中,导航到“Availability > Recovery Catalog Setting ...

  8. GoldenGate配置(一)之单向复制配置

    GoldenGate配置(一)之单向复制配置 环境: Item Source System Target System Platform Red Hat Enterprise Linux Server ...

  9. [Effective C++ --033]避免遮掩继承而来的名称

    这一章一直在想怎么写,因为比较基础,很容易理解,就按照需要来写吧. 假设我们有这样一个类: class Base { private: int x; public: ; virtual void mf ...

  10. FatMouse' Trade

    /* problem: FatMouse' Trade this is greedy problem. firstly:we should calculate the average J[i]/F[i ...