NumPy数组属性
NumPy - 数组属性
这一章中,我们会讨论 NumPy 的多种数组属性。
ndarray.shape
这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小。
示例 1
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print a.shape
输出如下:
(2, 3)
示例 2
# 这会调整数组大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]]) a.shape = (3,2)
print a
输出如下:
[[1, 2]
[3, 4]
[5, 6]]
示例 3
NumPy 也提供了reshape
函数来调整数组大小。
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print b
输出如下:
[[1, 2]
[3, 4]
[5, 6]]
ndarray.ndim
这一数组属性返回数组的维数。
示例 1
# 等间隔数字的数组
import numpy as np
a = np.arange(24) print a
输出如下:
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
示例 2
# 一维数组
import numpy as np
a = np.arange(24) a.ndim
# 现在调整其大小
b = a.reshape(2,4,3)
print b
# b 现在拥有三个维度
输出如下:
[[[ 0, 1, 2]
[ 3, 4, 5]
[ 6, 7, 8]
[ 9, 10, 11]]
[[12, 13, 14]
[15, 16, 17]
[18, 19, 20]
[21, 22, 23]]]
numpy.itemsize
这一数组属性返回数组中每个元素的字节单位长度。
示例 1
# 数组的 dtype 为 int8(一个字节)
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int8)
print x.itemsize
输出如下:
1
示例 2
# 数组的 dtype 现在为 float32(四个字节)
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.float32)
print x.itemsize
输出如下:
4
numpy.flags
ndarray
对象拥有以下属性。这个函数返回了它们的当前值。
序号 | 属性及描述 |
---|---|
1. | C_CONTIGUOUS (C) 数组位于单一的、C 风格的连续区段内 |
2. | F_CONTIGUOUS (F) 数组位于单一的、Fortran 风格的连续区段内 |
3. | OWNDATA (O) 数组的内存从其它对象处借用 |
4. | WRITEABLE (W) 数据区域可写入。 将它设置为flase 会锁定数据,使其只读 |
5. | ALIGNED (A) 数据和任何元素会为硬件适当对齐 |
6. | UPDATEIFCOPY (U) 这个数组是另一数组的副本。当这个数组释放时,源数组会由这个数组中的元素更新 |
示例
下面的例子展示当前的标志。
import numpy as np
x = np.array([1,2,3,4,5])
print x.flags
输出如下:
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
NumPy数组属性的更多相关文章
- numpy数组属性查看及断言
numpy数组属性查看:类型.尺寸.形状.维度 import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) ...
- Numpy 数组属性
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...
- 3.NumPy - 数组属性
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.a ...
- 3、NumPy 数组属性
1.秩.维度 NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 数组属性
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(di ...
- Lesson4——NumPy 数组属性
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axi ...
- NumPy 超详细教程(1):NumPy 数组
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:n ...
- numpy常见属性、创建数组
1.几种常见numpy的属性 ndim:维度 shape:行数和列数 size:元素个数 >>> import numpy as np #导入numpy模块,np是为了使用方便的 ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
随机推荐
- 【Lombok】了解
项目中使用了 Lombok ,对象无需写get set 等方法,一个注释便可以搞定.IDEA中项目报错,下载对应插件(Lombok Plugin)就好了.很神奇,就了解一下: 官网: Project ...
- react 坑总结
1.react可以在里面直接更改state的变量 例如: 2.react 数组循环
- delphi ,安装插件
一.安装 DevExpress52(VCL+Demo+Help+汉化ini)cxGrid技巧:DBGRIDEH 安装:点击devcl52.exe,安装,安装路径到D:\Program Files\Co ...
- 翻页bug 在接口文档中应规范参数的取值区间
<?php$a=array("red","green","blue","yellow","brown&q ...
- 一.数据库连接对象connection
1.python 3.5,需要把MySQLdb换成pymysql
- Android Paint setXfermode
背景: dst 前景: src PorterDuff.Mode.CLEAR 清除画布上图像 PorterDuff.Mode.XOR 取两层图像的非交集部门 PorterDuff.Mo ...
- oracle入门(2)—— 使用图形工具navicat for oracle
[本文介绍] 本文将介绍如何使用图形工具navicat for oracle连接本地数据库 以及远程访问 服务器数据库. [下载地址] http://www.navicat.com.cn/downlo ...
- 利用SimpleHttpServer+urllib传文件
1.服务器 利用SimpleHTTPServer,命令行运行 python -m SimpleHTTPServer 2.客户端 利用urllib等,方法有3个 import urllib print ...
- 129. Sum Root to Leaf Numbers(从根节点加到叶子节点的和)
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a numb ...
- C++中的config设计
配置文件读写类,它要有以下这些方法: 1. 支持读入一个指定配置文件的能力 2. 支持随时加入一个配置项的能力 3. 足够强大,能够写入各种数据结构的配置信息 C++ 里,我们要存储这样的数据就使用 ...