Description

Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides. 
For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a - c| + |b - d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest,at least one minute before the new ride’s scheduled departure. Note that some rides may end after midnight. 
Input

On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time. 
Output

For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides. 
Sample Input



08:00 10 11 9 16 
08:07 9 16 10 11 

08:00 10 11 9 16 
08:06 9 16 10 11 
Sample Output

1

题意是说有n个出车安排,一辆车能接到这个安排的条件是:1、这辆车第一次发车;2、这辆车接了上一个安排,回到这个安排的起点的时间正好是这个安排的前一分钟或者更早 
每一次安排有五个输入数据,第一个是发车时间,2、3是起点位置,4、5是终点位置,因此计算每两个安排之间的时间差可以用第一个的最后两个数和第二个的第二和三个数。我一开始就是这里没明白才不知道怎么算两个安排之间的关系 
接下来就是用二分图,把每个安排都放在二分图的两个点集上,显然两个相同的任务之间不会有边,只有符合题意的两个不同的任务可以连一条边

以上内容来自 https://blog.csdn.net/blue_skyrim/article/details/51331383

跑一边匈牙利就直接出来了  这个的数据量小  暴力也可以出来

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("in.txt","r",stdin)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
const int maxn = ;
typedef long long LL;
int cas, n, vis[], mp[][], match[], dfscnt;
struct node {
int time, a, b, c, d, later;
} qu[maxn];
int cal(int x1, int y1, int x2, int y2) {
return abs(x1 - x2) + abs(y1 - y2);
}
int dfs(int rt) {
for (int i = ; i <= n ; i++) {
if (mp[rt][i]) {
if (vis[i] != dfscnt) {
vis[i] = dfscnt;
if (!match[i] || dfs(match[i])) {
match[i] = rt;
return ;
}
}
}
}
return ;
} int main() {
scanf("%d", &cas);
while(cas--) {
scanf("%d", &n);
mem(vis, );
mem(mp, );
mem(match, );
dfscnt = ;
for (int i = ; i <= n ; i++) {
int x, y;
scanf("%d:%d %d%d%d%d", &x, &y, &qu[i].a, &qu[i].b, &qu[i].c, &qu[i].d);
qu[i].time = x * + y;
qu[i].later = qu[i].time + cal(qu[i].a, qu[i].b, qu[i].c, qu[i].d);
}
for (int i = ; i <= n ; i++)
for (int j = i ; j <= n; j++)
if (qu[i].later + cal(qu[i].c, qu[i].d, qu[j].a, qu[j].b) < qu[j].time) mp[i][j] = ;
int ans = ;
for (int i = ; i <= n ; i++) {
dfscnt++;
if (dfs(i)) ans++;
}
printf("%d\n", n - ans);
}
return ;
}

poj2060——Taxi Cab Scheme(最小路径覆盖)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  3. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  4. hdu1350Taxi Cab Scheme (最小路径覆盖)

    Taxi Cab Scheme Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  6. 【HDU1960】Taxi Cab Scheme(最小路径覆盖)

    Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  8. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  9. Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

    Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...

随机推荐

  1. angular-使用iframe做独立页(iframe传值到angular和iframe里请求后台数据)

    这个方法使用过两次.一次是在项目中嵌入一个表达式生成器.因为用别人做好的网页变成组件很难,而且里面用了jq,与angular思想相反不能用.另一次是因为想要单独引用样式.而innerHTML使用的样式 ...

  2. 【WXS数据类型】Boolean

    属性: 名称 值类型 说明 [Boolean].constructor [String] 返回值为“Boolean”,表示类型的结构字符串 方法: 原型:[Boolean].toString() 说明 ...

  3. 【转】: 探索Lua5.2内部实现:虚拟机指令(2) MOVE & LOAD

    name args desc OP_MOVE A B R(A) := R(B) OP_MOVE用来将寄存器B中的值拷贝到寄存器A中.由于Lua是register based vm,大部分的指令都是直接 ...

  4. RSA算法笔记+理解

    明天网络安全考试了,看了一下午,还没理解透,持续更新... 质数: 除了1和它本身以外不再有其他因素的数互质关系: 两个正整数,除了1以外,没有其他公因子RSA实现了非对称加密DES实现了对称加密** ...

  5. Bootstrap框架(图标)

    Glyphicons 字体图标 所有可用的图标 包括250多个来自 Glyphicon Halflings 的字体图标.Glyphicons Halflings 一般是收费的,但是他们的作者允许 Bo ...

  6. Linux查看物理CPU个数,核数,逻辑CPU个数;内存信息

    # 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 cat /proc/cpuinfo| ...

  7. 路由器如何设置上网(TP-LINK)

    最近宿舍公用的网络一直不太稳定,正赶上毕业季,本来就打算自己买一台自用的路由器,于是我从一个毕业的师姐手里15RMB收了一台路由器,师姐还给了我一根5m的网线和两根全新15m的,感觉光网线就赚翻了. ...

  8. LR脚本编写时的几个小技巧

    参数化空值 如上图所示,当参数化时某个值需要为空值(非空格),直接在参数化文件中空一行/格即可,虽然Parameter List界面上没有显示空的那一行,但并不影响取值. 手工日志跟踪 lr_set_ ...

  9. Python实现XML的操作

    本文从以下两个方面, 用Python实现XML的操作: 一. minidom写入XML示例1 二. minidom写入XML示例2 三. ElementTree写入/修改示例 四. ElementTr ...

  10. WCF面试精典题汇总

    1.WCF接口中的参数改名问题 在写WCF Web Service接口的时候,如果你对接口的参数名做改动的时候,一定要记住Update所有应用该Web service的客户端的Referrence,否 ...