Bellman-Ford算法——解决负权边
Dijkstra算法虽然好,但是它不能解决带有负权边(边的权值为负数)的图。
接下来学习一种无论在思想上还是在代码实现上都可以称为完美的最短路径算法:Bellman-Ford算法。
Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图。
for(k=;k<=n-;k++) //外循环循环n-1次,n为顶点个数
for(i=;i<=m;i++)//内循环循环m次,m为边的个数,即枚举每一条边
if(dis[v[i]]>dis[u[i]]+w[i])//尝试对每一条边进行松弛,与Dijkstra算法相同
dis[v[i]]=dis[u[i]]+w[i];
在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1条边,最短路径中不可能包含回路。
因为最短路径是一个不包含回路的简单路径,回路分为正权回路(回路权值之和为正)和负权回路(回路权值之和为负)。如果最短路径中包含正权回路,那么去掉这个回路,一定可以得到更短的路径;如果最短路径中包含负权回路,那么肯定没有最短路径,因为每多走一次负权回路就可以得到更短的路径. 因此最短路径肯定是一个不包含回路的最短路径,即最多包含n-1条边。
Bellman-Ford算法的主要思想:
首先dis数组初始化顶点u到其余各个顶点的距离为∞,dis[u] = 0。
然后每轮对输入的所有边进行松弛,更新dis数组,至多需要进行n-1次就可以求出顶点u到其余各顶点的最短路径(因为任意两点之间的最短路径最多包含n-1条边,所以只需要n-1轮就行)。
一句话概括Bellman-Ford算法就是:对所有边进行n-1次“松弛”操作。
此外,Bellman-Ford算法可以检测一个图是否有负权回路。如果已经进行了n-1轮松弛之后,仍然存在
if(dis[v[i]]>dis[u[i]]+w[i])
dis[v[i]]=dis[u[i]]+w[i];
的情况,也就是说在进行n-1轮之后,仍然可以继续成功松弛,那么这个图一定存在负权回路。
关键代码如下:
//Bellman-Ford算法核心语句
for(k=;k<=n-;k++) //外循环循环n-1次,n为顶点个数
for(i=;i<=m;i++)//内循环循环m次,m为边的个数,即枚举每一条边
if(dis[v[i]]>dis[u[i]]+w[i])//尝试对每一条边进行松弛,与Dijkstra算法相同
dis[v[i]]=dis[u[i]]+w[i];
//检测负权回路
flag=;
for(i=;i<=m;i++)
if(dis[v[i]]>dis[u[i]]+w[i])
flag=;
if(flag==)
printf("此图有负权回路");
显然,算法复杂度为O(NM),比Dijkstra算法还高,当然可以进行优化。
在实际操作中,Bellman-Ford算法经常会在没有达到n-1轮松弛前就已经计算出最短路,上面已经说过,n-1其实是最大轮回次数。
因此可以添加一个变量check用来标记数组dis在本轮松弛中是否发生了变化,若没有变化,则提前跳出循环。
完整代码如下:
#include <stdio.h> #define INF 999999
int main()
{
int i, j, n, m;
int dis[], bak[], u[], v[], w[];
int check, flag = ;
//读入n和m,n表示顶点个数,m表示边的条数
scanf_s("%d %d", &n, &m);
//读入边
for (i = ; i <= m; ++i)
{
scanf_s("%d %d %d", &u[i], &v[i], &w[i]);
}
//初始化dis数组,这里是1号顶点到其余顶点的初始路程
for (i = ; i <= n; ++i)
{
dis[i] = INF;
}
dis[] = ; // Bellman-Ford算法核心代码
for (j = ; j <= n-; ++j) //最多循环n-1轮
{
check = ;//用来标记在本轮松弛中数组dis是否发生更新
for (i = ; i <= m; ++i) // 最核心的3句Bellman-Ford算法
{
if (dis[v[i]] > dis[u[i]] + w[i])
{
dis[v[i]] = dis[u[i]] + w[i];
check = ;//数组dis发生更新,改变check的值
}
}
//松弛完毕后检测数组dis是否有更新
if (check==)
{
break; //没有更新则提前退出程序
}
} //检测负权回路
for (i = ; i <= m; ++i) // n-1次之后最短路径还会发生变化则含有负权回路
{
if (dis[v[i]] > dis[u[i]] + w[i])
{
flag = ;
}
} if (flag==)
{
printf("该图有负权回路");
}
else
{
//输出最终结果
printf("最终结果为:\n");
for (i = ; i <= n; ++i)
{
printf(" 1号顶点到%d号顶点的最短距离为:%d\n", i,dis[i]);
}
}
printf("\n");
getchar();
getchar();
return ;
}




Bellman-Ford算法——解决负权边的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- hdu1533 Going Home km算法解决最小权完美匹配
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- Bellman-Ford(可解决负权边)--时间复杂度优化
Bellman-Ford 可解决带有负权边的最短路问题 解决负权边和Dijkstra相比是一个优点,Bellman-Ford的核心代码只有4行:: u[],v[],w[] 分别存一条边的顶点.权值,d ...
- python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边
# Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意 ...
- 最短路径之Bellman-Ford——解决负权边
Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图. for(k=1;k<=n-1;k++) //外循环循环n-1次,n为顶点个数 for(i=1;i<=m; ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman-ford算法与SPFA算法思想详解及判负权环(负权回路)
我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借 ...
随机推荐
- JMS、MQ、ActiveMQ
JMS 的一个标准或者说是一个协议. 通常用于企业级应用的消息传递. 主要有topic 消息(1 对多), queue 消息(1对1). ActiveMQ 是一个JMS 的实现, apache 出的. ...
- 20145201 《Java程序设计》第六周学习总结
20145201 <Java程序设计>第六周学习总结 教材学习内容总结 本周学习了课本第十.十一章内容,即输入/输出.线程与并行API. 第十章 输入输出 10.1 InputStream ...
- 华为S5700系列交换机配置通过Telnet登录设备
声明:不管什么服务,都需要交换机开启服务,创建对应权限的用户,在通道下允许协议通过,缺一不可,以telnet为例. 组网图形 图1 配置通过Telnet登录设备组网图 组网需求 如图一所示,PC与设备 ...
- mysql配置文件生效顺序
安装完数据库 除了将my.cnf放在/etc/下放在其他地方也是可以的 cp /usr/share/mysql/my-default.cnf /etc/my.cnf 今天就看一下这些my.cnf是怎么 ...
- JavaEE之Junit单元测试
1编写测试类,简单理解Junit可以部分用于取代java的main方法 2在测试类方法上添加注解 @Test 3 @Test修饰的方法要求:public void 方法名() {…} ,方法名自定义建 ...
- tar 解压命令学习与总结
tar -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个 ...
- 2-Color Dutch National Flag Problem
2-Color Dutch National Flag Problem 问题 a[0..n-1]中包含红元素或蓝元素;重新放置使得 红元素均在蓝元素之前. 循环不变式 每一次循环,a[0...k-1] ...
- windows 环境下安装python MySQLdb
使用Python访问MySQL,需要一系列安装 Linux下MySQLdb安装见 Python MySQLdb在Linux下的快速安装 http://blog.csdn.NET/wklken/arti ...
- Json -- 语法和示例,javascript 解析Json
1. 语法 JSON(JavaScriptObject Notation)一种简单的数据格式,比xml更轻巧.JSON是JavaScript原生格式,这意味着在JavaScript中处理JSON数据不 ...
- Java中Collections.sort()排序详解
public static void main(String[] args) { List<String> list = new ArrayList<String>(); ...