Bellman-Ford算法——解决负权边
Dijkstra算法虽然好,但是它不能解决带有负权边(边的权值为负数)的图。
接下来学习一种无论在思想上还是在代码实现上都可以称为完美的最短路径算法:Bellman-Ford算法。
Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图。
for(k=;k<=n-;k++) //外循环循环n-1次,n为顶点个数
for(i=;i<=m;i++)//内循环循环m次,m为边的个数,即枚举每一条边
if(dis[v[i]]>dis[u[i]]+w[i])//尝试对每一条边进行松弛,与Dijkstra算法相同
dis[v[i]]=dis[u[i]]+w[i];
在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1条边,最短路径中不可能包含回路。
因为最短路径是一个不包含回路的简单路径,回路分为正权回路(回路权值之和为正)和负权回路(回路权值之和为负)。如果最短路径中包含正权回路,那么去掉这个回路,一定可以得到更短的路径;如果最短路径中包含负权回路,那么肯定没有最短路径,因为每多走一次负权回路就可以得到更短的路径. 因此最短路径肯定是一个不包含回路的最短路径,即最多包含n-1条边。
Bellman-Ford算法的主要思想:
首先dis数组初始化顶点u到其余各个顶点的距离为∞,dis[u] = 0。
然后每轮对输入的所有边进行松弛,更新dis数组,至多需要进行n-1次就可以求出顶点u到其余各顶点的最短路径(因为任意两点之间的最短路径最多包含n-1条边,所以只需要n-1轮就行)。
一句话概括Bellman-Ford算法就是:对所有边进行n-1次“松弛”操作。
此外,Bellman-Ford算法可以检测一个图是否有负权回路。如果已经进行了n-1轮松弛之后,仍然存在
if(dis[v[i]]>dis[u[i]]+w[i])
dis[v[i]]=dis[u[i]]+w[i];
的情况,也就是说在进行n-1轮之后,仍然可以继续成功松弛,那么这个图一定存在负权回路。
关键代码如下:
//Bellman-Ford算法核心语句
for(k=;k<=n-;k++) //外循环循环n-1次,n为顶点个数
for(i=;i<=m;i++)//内循环循环m次,m为边的个数,即枚举每一条边
if(dis[v[i]]>dis[u[i]]+w[i])//尝试对每一条边进行松弛,与Dijkstra算法相同
dis[v[i]]=dis[u[i]]+w[i];
//检测负权回路
flag=;
for(i=;i<=m;i++)
if(dis[v[i]]>dis[u[i]]+w[i])
flag=;
if(flag==)
printf("此图有负权回路");
显然,算法复杂度为O(NM),比Dijkstra算法还高,当然可以进行优化。
在实际操作中,Bellman-Ford算法经常会在没有达到n-1轮松弛前就已经计算出最短路,上面已经说过,n-1其实是最大轮回次数。
因此可以添加一个变量check用来标记数组dis在本轮松弛中是否发生了变化,若没有变化,则提前跳出循环。
完整代码如下:
#include <stdio.h> #define INF 999999
int main()
{
int i, j, n, m;
int dis[], bak[], u[], v[], w[];
int check, flag = ;
//读入n和m,n表示顶点个数,m表示边的条数
scanf_s("%d %d", &n, &m);
//读入边
for (i = ; i <= m; ++i)
{
scanf_s("%d %d %d", &u[i], &v[i], &w[i]);
}
//初始化dis数组,这里是1号顶点到其余顶点的初始路程
for (i = ; i <= n; ++i)
{
dis[i] = INF;
}
dis[] = ; // Bellman-Ford算法核心代码
for (j = ; j <= n-; ++j) //最多循环n-1轮
{
check = ;//用来标记在本轮松弛中数组dis是否发生更新
for (i = ; i <= m; ++i) // 最核心的3句Bellman-Ford算法
{
if (dis[v[i]] > dis[u[i]] + w[i])
{
dis[v[i]] = dis[u[i]] + w[i];
check = ;//数组dis发生更新,改变check的值
}
}
//松弛完毕后检测数组dis是否有更新
if (check==)
{
break; //没有更新则提前退出程序
}
} //检测负权回路
for (i = ; i <= m; ++i) // n-1次之后最短路径还会发生变化则含有负权回路
{
if (dis[v[i]] > dis[u[i]] + w[i])
{
flag = ;
}
} if (flag==)
{
printf("该图有负权回路");
}
else
{
//输出最终结果
printf("最终结果为:\n");
for (i = ; i <= n; ++i)
{
printf(" 1号顶点到%d号顶点的最短距离为:%d\n", i,dis[i]);
}
}
printf("\n");
getchar();
getchar();
return ;
}
Bellman-Ford算法——解决负权边的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- hdu1533 Going Home km算法解决最小权完美匹配
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- Bellman-Ford(可解决负权边)--时间复杂度优化
Bellman-Ford 可解决带有负权边的最短路问题 解决负权边和Dijkstra相比是一个优点,Bellman-Ford的核心代码只有4行:: u[],v[],w[] 分别存一条边的顶点.权值,d ...
- python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边
# Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意 ...
- 最短路径之Bellman-Ford——解决负权边
Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图. for(k=1;k<=n-1;k++) //外循环循环n-1次,n为顶点个数 for(i=1;i<=m; ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman-ford算法与SPFA算法思想详解及判负权环(负权回路)
我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借 ...
随机推荐
- Linux下SSH中配置说明
SSH 协议:安全外壳协议.为 Secure Shell 的缩写.SSH 为建立在应用层和传输层基础上的安全协议. sshd服务使用SSH协议可以用来进行远程控制,或在计算机之间传送文件.而实现此功能 ...
- [转]浅谈Hive vs. HBase 区别在哪里
浅谈Hive vs. HBase 区别在哪里 导读:Apache Hive是一个构建于Hadoop(分布式系统基础架构)顶层的数据仓库,Apache HBase是运行于HDFS顶层的NoSQL(=No ...
- jQuery/CSS3 3D焦点图动画
在线演示 本地下载
- kali 2016:mount ntfs 分区只读 --Falling back to read-only mount because the NTFS partition is in an unsafe state.
mount ntfs 分区 mount /dev/sdb1 /mnt/d 提示: The disk contains an unclean file system (0, 0).Metadata ke ...
- 20145201 《Java程序设计》第一周学习总结
# 20145201 <Java程序设计>第一周学习总结 ## 教材学习内容总结 万事开头难,终于开始学习了Java.寒假的时候看到老师的要求确实有点慌,但是这周翻开书,从书本知识第一行学 ...
- Ubuntu系统Anaconda下载安装与切换源教程【转】
本文转载自:https://blog.csdn.net/qq_36268036/article/details/81517893 1. 下载安装: 这里选用国内清华大学的Tuna开源软件镜像站作为演示 ...
- codeforces 703B
题意:有n座城市,其中k座是省会城市,每个城市有对应的点权,城市1-2-3-...-n-1有一条路相连,省会城市与其他所有的城市相连,且每两个城市间最多有一条路,每条路的边权为路连接的两座城市的点权乘 ...
- 出入Spring boot(六)数据访问
Spring Data提供了使用统一的API进行数据访问操作,这是Spring通过提供Spring DataCommons项目来实现的,它是Spring data的依赖Spring Data Comm ...
- windows拒绝远程登陆
- mysql desc esc 基本命令总结
asc 按升序排列desc 按降序排列 下列语句部分是Mssql语句,不可以在access中使用. SQL分类:DDL—数据定义语言(CREATE,ALTER,DROP,DECLARE)DML—数据操 ...