利用主成分分析(PCA)简化数据
一.PCA基础
线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分。即将主成分维度组成的向量空间作为低维空间,将高维数据投影到这个空间上就完成了降维的工作。
在 PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。我们会发现,大部分方差都包含在最前面的几个新坐标轴中。因此,我们可以忽略余下的坐标轴,即对数据进行了降维处理。
工作原理:
①找出第一个主成分的方向,也就是数据 方差最大 的方向。
②找出第二个主成分的方向,也就是数据 方差次大 的方向,并且该方向与第一个主成分方向正交(果是二维空间就叫垂直)。
③通过这种方式计算出所有的主成分方向。
④通过数据集的协方差矩阵及其特征值分析,我们就可以得到这些主成分的值。
⑤一旦得到了协方差矩阵的特征值和特征向量,我们就可以保留最大的 N 个特征。这些特征向量也给出了 N 个最重要特征的真实结构,我们就可以通过将数据乘上这 N 个特征向量 从而将它转换到新的空间上。

二.PCA在NumPy中的实现

def loadDataSet(fileName, delim='\t') :
fr = open(fileName)
stringArr = [line.strip().split(delim) for line in fr.readlines()]
dataArr = [map(float, line) for line in stringArr]
return mat(dataArr) # dataMat: 用于进行PCA操作的数据集
# topNfeat: 可选参数,即应用的N个特征。
# 若不指定topNfeat的值,那么函数就会返回前9999999个特征,或者原始数据中的全部特征
def pca(dataMat, topNfeat=9999999) :
# 计算平均值
meanVals = mean(dataMat, axis=0)
# 减去原始数据的平均值
meanRemoved = dataMat - meanVals
# 计算协方差矩阵及其特征值
covMat = cov(meanRemoved, rowvar=0)
eigVals, eigVects = linalg.eig(mat(covMat))
# 利用argsort()函数对特征值进行从小到大的排序,根据特征值排序结果的逆序就可以得到
# topNfeat个最大的特征向量
eigValInd = argsort(eigVals)
eigValInd = eigValInd[:-(topNfeat+1):-1]
# 这些特征向量将构成后面对数据进行转换的矩阵,该矩阵则利用N个特征将原始数据转换到新空间中
redEigVects = eigVects[:, eigValInd]
lowDDataMat = meanRemoved * redEigVects
reconMat = (lowDDataMat * redEigVects.T) + meanVals
return lowDDataMat, reconMat
注意:与python2有点不同,python3要加list

>>> dataMat = pca.loadDataSet('testSet.txt')
>>> lowDMat, reconMat = pca.pca(dataMat, 1)
>>> import numpy
>>> numpy.shape(lowDMat)
(1000, 1)
>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.scatter(dataMat[:,0].flatten().A[0], dataMat[:,1].flatten().A[0], marker='^', s=90)
<matplotlib.collections.PathCollection object at 0x000002449DCFA2B0>
>>> ax.scatter(reconMat[:,0].flatten().A[0], reconMat[:,1].flatten().A[0], marker='o', s=50, c='red')
<matplotlib.collections.PathCollection object at 0x000002449DCFABE0>
>>> plt.show()
得到如图

三.利用PCA对半导体制造数据降维
def replaceNaNWithMean():
#解析数据
datMat=loadDataSet('secom.data',' ')
#获取特征维度
numFeat=shape(datMat)[1]
#遍历数据集每一个维度
for i in range(numFeat):
#利用该维度所有非NaN特征求取均值
meanVal=mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i])
#将该维度中所有NaN特征全部用均值替换
datMat[nonzero(isnan(datMat[:,i].A))[0],i]=meanVal
return datMat dataMat=replaceNaNWithMean()
meanVals=mean(dataMat,axis=0)
meanRemoved=dataMat-meanVals
conMat=cov(meanRemoved,rowvar=0)
eigVals,eigVects=linalg.eig(mat(covMat))
eigVects
结果出现错误

错误有待解决,也希望知道原因的小伙伴能告知一下,非常感谢
利用主成分分析(PCA)简化数据的更多相关文章
- 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 【机器学习实战】第13章 利用 PCA 来简化数据
第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实 ...
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- 【机器学习实战】第14章 利用SVD简化数据
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生 ...
- 《机器学习实战》学习笔记——第14章 利用SVD简化数据
一. SVD 1. 基本概念: (1)定义:提取信息的方法:奇异值分解Singular Value Decomposition(SVD) (2)优点:简化数据, 去除噪声,提高算法的结果 (3)缺点: ...
- 机器学习实战 - 读书笔记(14) - 利用SVD简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...
- 机器学习——利用SVD简化数据
奇异值分解(Singular Value Decompositon,SVD),可以实现用小得多的数据集来表示原始数据集. 优点:简化数据,取出噪声,提高算法的结果 缺点:数据的转换可能难以理解 适用数 ...
- SciKit-Learn 可视化数据:主成分分析(PCA)
## 保留版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Le ...
随机推荐
- Toad for MySQL 7.3 Freeware异常 2017-01-09 15:14 115人阅读 评论(0) 收藏
打开Toad出现如下异常信息: 解决办法: 重装.NET Framework4.0
- windows时间同步脚本
#!/usr/bin/env python# -*- coding:UTF-8 -*-# 脚本用于windows时间同步,设置window计划任务每五分钟执行一次 import timeimport ...
- 035server端并发聊天
import socketserver class MyServer(socketserver.BaseRequestHandler): def handle(self): # 里面是每个客户端连接执 ...
- Promise里捕捉错误的最佳实践
Promise里的同步部分不需要try catch new Promise((resolve, reject) => { throw new Error('error'); setTimeout ...
- jq仿 妙味课堂导航01
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- MySQL语法三:数据控制语句
数据控制语句MCL(GRANT,REVOKE,COMMIT,ROLLBACK)
- 简易log4j 父logger和子logger
log4j 父logger和子logger 定义子logger其目的就是能够在某一范围内(某一个class或者某一个package)下面,日志的输出方式与其他地方的日志输出方式不同. ...
- xalan\xalan\2.7.2\xercesImpl.jar (系统找不到指定的文件)问题
本文转自:http://blog.csdn.net/lveliu/article/details/77772828 环境搭建为:maven+tomcat tomcat 8.5.2 以上会出现改问题(包 ...
- PHP---------Smarty模板
Smarty模板 是做什么用的?? 是将前端的显示和后台的逻辑进行分离,就相当于把前台显示的页面和后台要实现的某些功能的逻辑给分离出来了,分离在两个文件里,也就是说,前端只负责显示,后端只负责逻辑操作 ...
- thinkphp 和 laravel使用sql语句操作db和源码浅析
thinkphp 和 laravel是phper开发中用的比较多的两个框架,无所谓好坏,看个人习惯及喜爱! 前言对于一个PHP应用,可能最多的就是操作数据,以致于初学者有时只把php当做数据库增删查改 ...