http://www.lydsy.com/JudgeOnline/problem.php?id=1026

Description

  windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?

Input

  包含两个整数,A B。

Output

  一个整数

Sample Input

【输入样例一】
1 10
【输入样例二】
25 50

Sample Output

【输出样例一】
9
【输出样例二】
20

————————————————————————————————————

今天开始学数位dp了!

所以趁着这道题还简单赶紧记录下来。

设dp(n)表示0~n的windy数个数。

设f[i][j][0/1]表示当前处理到第i位数为j,此时前i位数比n的前i位数小于等于(为0)/大于(为1)的数的个数。

显然我们求a~b的个数可以利用前缀和,只需要求dp(b)再减去dp(a-1)即可。

那么对于函数dp(n),其主要流程:

1.将n拆成十进制数,存在数组中(这里数组为a,长度为len)

2.特殊处理第一层:

for(int i=;i<=;i++){
if(i<=a[])f[][i][]=;
else f[][i][]=;
}

3.枚举i=2~len层并处理之,枚举当前层填充的数字j和上一层填充数字k。当符合windy数的条件时开始更新,更新方程较显然就不多说了:

if(j<a[i])
f[i][j][]+=f[i-][k][]+f[i-][k][];
else if(j==a[i])
f[i][j][]+=f[i-][k][],f[i][j][]+=f[i-][k][];
else f[i][j][]+=f[i-][k][]+f[i-][k][];

4.得出答案。这里需要注意对于最后一层需要特殊处理防止越出0~n的范围。也很显然。

整套流程至此完毕,复杂度显然为log级别。

PS:判断是否为windy数很简单,这里用了一个辅助数组c[i][j]表示abs(i-j),借此判断能够美化代码(滑稽)

#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
int a[N],f[N][N][],c[N][N];
int dp(int x){
int len=;
while(x)a[++len]=x%,x/=;
if(len==)a[++len]=;
memset(f,,sizeof(f));
for(int i=;i<=;i++){
if(i<=a[])f[][i][]=;
else f[][i][]=;
}
for(int i=;i<=len;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
if(c[j][k]>=){
if(j<a[i])
f[i][j][]+=f[i-][k][]+f[i-][k][];
else if(j==a[i])
f[i][j][]+=f[i-][k][],f[i][j][]+=f[i-][k][];
else f[i][j][]+=f[i-][k][]+f[i-][k][];
}
}
}
}
int ans=;
for(int i=;i<=a[len];i++)ans+=f[len][i][];
for(int i=len-;i;i--){
for(int j=;j<=;j++){
ans+=f[i][j][]+f[i][j][];
}
}
return ans;
}
int main(){
for(int i=;i<=;i++){
for(int j=i;j<=;j++){
c[i][j]=c[j][i]=j-i;
}
}
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",dp(b)-dp(a-));
return ;
}

BZOJ1026:[SCOI2009]windy数——题解的更多相关文章

  1. BZOJ1026 SCOI2009 windy数 【数位DP】

    BZOJ1026 SCOI2009 windy数 Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B ...

  2. bzoj1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8203  Solved: 3687[Submit][Sta ...

  3. bzoj1026: [SCOI2009]windy数(传说你是数位DP)

    1026: [SCOI2009]windy数 题目:传送门 题解: 其实之前年少无知的时候好像A过...表示当时并不知道什么数位DP 今天回来深造一发... 其实如果对这个算法稍有了解...看到这题的 ...

  4. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  5. 【数位DP】bzoj1026: [SCOI2009]windy数

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4163  Solved: 1864[Submit][Sta ...

  6. 2018.06.30 BZOJ1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻两 ...

  7. bzoj千题计划117:bzoj1026: [SCOI2009]windy数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1026 数位DP 如果前一位填的是0, 0是前导0,下一位可以随便填 0不是前导0,下一位不能填1 为 ...

  8. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  9. [bzoj1026][SCOI2009]windy数_数位dp

    windy数 bzoj-1026 题目大意:求一段区间中的windy数个数. 注释:如果一个数任意相邻两位的差的绝对值都不小于2,这个数就是windy数,没有前导0.$区间边界<=2\cdot ...

随机推荐

  1. 从零学习安全测试,从XSS漏洞攻击和防御开始

    WeTest 导读 本篇包含了XSS漏洞攻击及防御详细介绍,包括漏洞基础.XSS基础.编码基础.XSS Payload.XSS攻击防御. 第一部分:漏洞攻防基础知识   XSS属于漏洞攻防,我们要研究 ...

  2. Java多线程之volatile与synchronized比较

    可见性: JAVA内存模型: java为了加快程序的运行效率,对一些变量的操作是在寄存器或者CPU缓存上进行的,后面再同步到主存中 看上图,线程在运行的过程中,会从主内存里面去去变量,读到自己的空间内 ...

  3. 怎么设计好移动APP测试用例

    软件测试工作中我们需要不断的储备和总结自己的知识和经验,怎么设计好移动APP测试用例?如:手机.平板.智能设备,并在特定网络环境下. 我们需要关注的功能点,容易出错的位置,这将对我们整个测试过程起着至 ...

  4. lintcode433 岛屿的个数

    岛屿的个数 给一个01矩阵,求不同的岛屿的个数. 0代表海,1代表岛,如果两个1相邻,那么这两个1属于同一个岛.我们只考虑上下左右为相邻. 您在真实的面试中是否遇到过这个题? Yes 样例 在矩阵: ...

  5. leetcode个人题解——#5 Container with most water

    class Solution { public: string longestPalindrome(string s) { int length = s.length(); ) return s; ; ...

  6. scatter注记词

    say illness thumb ginger brass atom twenty omit fine thought staff poverty

  7. 五:ResourceManager High Availability RM 高可用

    RM有单点失败的风险,但是可以做HA.  RMs HA通过master/standby这种结构实现,一个master是active的,其它standby是inactive的.可能通过命令行切换主备节点 ...

  8. 20172305 2018-2019-1 《Java软件结构与数据结构》第一周学习总结

    20172305 2018-2019-1 <Java软件结构与数据结构>第一周学习总结 教材学习内容总结 本周内容主要为书第一章和第二章的内容: 第一章 软件质量: 正确性(软件达到特定需 ...

  9. oracle数据库之触发器

    触发器是许多关系数据库系统都提供的一项技术.在 ORACLE 系统里,触发器类似过程和函数,都有声明,执行和异常处理过程的 PL/SQL 块. 一. 触发器类型 触发器在数据库里以独立的对象存储,它与 ...

  10. LintCode-38.搜索二维矩阵 II

    搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复 ...