题目链接

  题目要求:

  Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

  For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
  the contiguous subarray [4,−1,2,1] has the largest sum = 6.

  More practice:

  If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

  复杂度为O(n)的程序如下:

 class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sz = nums.size();
if(sz == )
return ; int maxsofar = INT_MIN;
int sum = ;
for(int i = ; i < sz; i++)
{
sum += nums[i];
if(sum > maxsofar)
maxsofar = sum;
if(sum < )
sum = ;
} return maxsofar;
}
};

  我们也可以利用局部最优和全局最优的思想来解决这个问题(参考自一博文):

  基本思路是这样的,在每一步,我们维护两个变量,一个是全局最优,就是到当前元素为止最优的解是,一个是局部最优,就是必须包含当前元素的最优的解。接下来说说动态规划的递推式(这是动态规划最重要的步骤,递归式出来了,基本上代码框架也就出来了)。假设我们已知第i步的global[i](全局最优)和local[i](局部最优),那么第i+1步的表达式是:local[i+1]=max(A[i], local[i]+A[i]),就是局部最优是一定要包含当前元素,所以不然就是上一步的局部最优local[i]+当前元素A[i](因为local[i]一定包含第i个元素,所以不违反条件),但是如果local[i]是负的,那么加上他就不如不需要的,所以不然就是直接用A[i];global[i+1]=max(local[i+1],global[i]),有了当前一步的局部最优,那么全局最优就是当前的局部最优或者还是原来的全局最优(所有情况都会被涵盖进来,因为最优的解如果不包含当前元素,那么前面会被维护在全局最优里面,如果包含当前元素,那么就是这个局部最优)。

  具体程序如下:

 class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sz = nums.size();
if(sz == )
return ; vector<int> local(sz, );
vector<int> global(sz, );
local[] = nums[];
global[] = nums[];
for(int i = ; i < sz; i++)
{
local[i] = max(nums[i], nums[i] + local[i - ]);
global[i] = max(global[i - ], local[i]);
} return global[sz - ];
}
};

  这个程序还可以更节省空间:

 class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sz = nums.size();
if(sz == )
return ; int local = nums[];
int global = nums[];
for(int i = ; i < sz; i++)
{
local = max(nums[i], nums[i] + local);
global = max(global, local);
} return global;
}
};

LeetCode之“动态规划”:Maximum Subarray的更多相关文章

  1. [Leetcode][Python]53: Maximum Subarray

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...

  2. Leetcode之53. Maximum Subarray Easy

    Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...

  3. 【LeetCode】053. Maximum Subarray

    题目: Find the contiguous subarray within an array (containing at least one number) which has the larg ...

  4. 【LeetCode】53. Maximum Subarray (2 solutions)

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  5. 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...

  6. LeetCode OJ 53. Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. 【一天一道LeetCode】#53. Maximum Subarray

    一天一道LeetCode系列 (一)题目 Find the contiguous subarray within an array (containing at least one number) w ...

  8. (LeetCode 53)Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  9. 【leetcode】1186. Maximum Subarray Sum with One Deletion

    题目如下: Given an array of integers, return the maximum sum for a non-empty subarray (contiguous elemen ...

  10. Leetcode No.53 Maximum Subarray(c++实现)

    1. 题目 1.1 英文题目 Given an integer array nums, find the contiguous subarray (containing at least one nu ...

随机推荐

  1. Android WebView选择本地文件上传

    This sample demonstrate android webview choose file to upload. I just implement the client code ,the ...

  2. Swift中集合类型indexOf(Element)提示错误的解决办法

    大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 初学Swift,会遇到一些潜在的小问题,比如我们在某个集合对象 ...

  3. 【编程练习】poj1068

    Parencodings Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24202   Accepted: 14201 De ...

  4. Linux系统编程-----进程fork()

    在开始之前,我们先来了解一些基本的概念: 1. 程序, 没有在运行的可执行文件 进程, 运行中的程序 2. 进程调度的方法: 按时间片轮转 先来先服务 短时间优先 按优先级别 3. 进程的状态: 就绪 ...

  5. AndroidVerifyBoot

    253        Utils.write(image_with_metadata, outPath);254    }227行得到boot.img的size 238行new一个BootSignat ...

  6. 概率论:假设检验-t检验和Augmented Dickey–Fuller test

    http://blog.csdn.net/pipisorry/article/details/51184556 T检验 T检验,亦称student t检验(Student's t test),学生t检 ...

  7. 流量控制闸门——LimitLatch套接字连接数限制器

    Tomcat作为web服务器,对于每个客户端的请求将给予处理响应,但对于一台机器而言,访问请求的总流量有高峰期且服务器有物理极限,为了保证web服务器不被冲垮我们需要采取一些措施进行保护预防,需要稍微 ...

  8. Mat, IplImage, CvMat, Cvarr关系及元素获取

    自己目前正打算整理opencv数据结构之间关系,寻寻觅觅之间,发现这篇博文很全面,总结得很好,故转之.红色部分不对,自己已修改! 原文地址:http://blog.csdn.net/abcjennif ...

  9. 【一天一道LeetCode】#121. Best Time to Buy and Sell Stock

    # 一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Say ...

  10. Gradle 1.12翻译——第十九章. Gradle 守护进程

    有关其他已翻译的章节请关注Github上的项目:https://github.com/msdx/gradledoc/tree/1.12,或访问:http://gradledoc.qiniudn.com ...