R数据分析 第一篇:温习概率论
概率论是人们在长期实践中发现的理论,是客观存在的。自然界和社会上发生的现象是多种多样的,有一类现象,在一定条件下必然发生,称作确定性现象,而概率论研究的现象是不确定性现象,嗯嗯,醒醒,概率论研究的对象是随机现象。那什么是随机现象呢?在个别试验中呈现出不确定性,而在大量重复实验中呈现出固有规律性的现象,称作随机现象,在大量重复实验中所呈现的固有规律,是统计规律性,也就是概率。
一,概率和频率
在说概率之前,不得不说频率。对于一个随机事件来说,在一次试验中可能发生,也可能不发生,那么,如何表征事件在一次试验中发生的可能性大小呢?为了解答这个问题,引入了频率。频率描述了事件发生的频繁程度,频率越大,事件发生的越频繁,这意味着事件在一次试验中发生的可能性越大。我们定义,概率表征事件在一次试验中发生的可能性大小,因此,可从频率引出概率。
概率是事件的固有规律,必须是稳定的一个数值,频率具有稳定性吗?在长期实践中,当试验次数不断增大时,事件发生的频率稳定在一个值附近,这一客观事实证明频率具有稳定性。伯努利大数定理用数学公式证明了频率的稳定性,因此,在实际应用中,当试验次数很大时,可以用事件的频率来代替事件的概率,用于表征事件发生的可能性大小。
在大学概率论中,都学过正态分布。中心极限定理表明,在相当一般的条件下,当独立随机变量的个数不断增加时,其和的分布趋于正太分布,通俗地说,如果一个事件受到N(N趋近于无穷)个独立的因素的共同影响,且每个因素产生的影响都是独立的,那么这个事件发生的概率就服从中心极限定理,收敛于正态分布。在实际应用中,正态分布是非常重要的,只要影响因素充分多,都可以用正态分布来预测事件发生的概率。

在研究概率论时,可以使用随机变量代表随机试验的一个结果,而这个随机变量具有数值属性,代表一个数值,这使得,可以使用数学分析的方法来描述随机现象。随机变量的取值随实验的结果而定,在试验之前不能预知事件的概率,且它的取值有一定的概率。在计算概率时,根据随机变量是否可以罗列,把随机变量分为离散型和连续型。
1,离散性随机变量
如果随机变量的全部取值是有限个或可列无限多个,这种随机变量称作离散性随机变量。 离散性随机变量使用分布规律来研究,服从二项分布或泊松分布。要归纳一个离散型随机变量的统计规律,只需要知道随机变量的可能取值,以及每一个取值的可能值。也就是说,对于每一个可能的取值,都有一个数值来表征该值出现的可能性。
2,连续性随机变量
对于连续性随机变量,由于其可能的取值不能一一列举出来,通常情况下,连续性随机变量取某一个值的概率都是0。连续性随机变量使用概率密度来研究,服从概率密度函数。常用的概率密度是:均匀分布,指数分布和正态分布。 概率密度是什么意思?简单来说,就是连续随机变量落在某个区间的面积就是其概率。

从坐标系上看,把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有区间的面积的和为1,因此,事件发生在某一个区间内的概率就是面积的大小。
二,随机变量的数字特征
对于单个随机变量,有两个描述性统计量:
- 数学期望,是随机变量的均值,是随机变量和概率的乘积的加和。
- 方差:表征随机变量和均值的偏离程度。
两个随机变量之间的线性关系:
- 协方差表征两个随机变量的变化相关程度。通俗地说,是两个变量在变化过程中是同方向变化(同时增大),还是反方向变化(一个增大,一个减小),以及变化的程度(数值越大,同向程度越大)。
- 相关系数,也称为线性相关系数,用于表征两个随机变量的线性变化的相关程度,如果相关系数是0,表示两个随机变量之间没有关系,不相关。
大学期间学习的统计知识,挥一挥手,都没有带走; 闲来无事,温习一下,只摘重点,不求细节,能用就行。
R数据分析 第一篇:温习概率论的更多相关文章
- R数据挖掘 第一篇:聚类分析(划分)
聚类是把一个数据集划分成多个子集的过程,每一个子集称作一个簇(Cluster),聚类使得簇内的对象具有很高的相似性,但与其他簇中的对象很不相似,由聚类分析产生的簇的集合称作一个聚类.在相同的数据集上, ...
- 数据分析之路 第一篇 numpy
第一篇 numpy 1.N维数组对象 :ndarray在Python中既然有了列表类型,为啥还要整个数组对象(类型)?那是因为:1.数组对象可以除去元素间运算所需要的循环,使得一维向量更像单个数据2. ...
- Android基础学习第一篇—Project目录结构
写在前面的话: 1. 最近在自学Android,也是边看书边写一些Demo,由于知识点越来越多,脑子越来越记不清楚,所以打算写成读书笔记,供以后查看,也算是把自己学到所理解的东西写出来,献丑,如有不对 ...
- 前端工程师技能之photoshop巧用系列第一篇——准备篇
× 目录 [1]作用 [2]初始化 [3]常用工具[4]快捷键 前面的话 photoshop是前端工程师无法回避的一个软件,这个软件本身很强大,但我们仅仅需要通过这个工具来完成基本的切图工作即可.本文 ...
- .net开发笔记(十三) Winform常用开发模式第一篇
上一篇博客最后我提到“异步编程模型”(APM),之后本来打算整理一下这方面的材料然后总结一下写篇文章与诸位分享,后来在整理的过程中不断的延伸不断地扩展,发现完全偏离了“异步编程”这个概念,前前后后所有 ...
- 国内第一篇详细讲解hadoop2的automatic HA+Federation+Yarn配置的教程
前言 hadoop是分布式系统,运行在linux之上,配置起来相对复杂.对于hadoop1,很多同学就因为不能搭建正确的运行环境,导致学习兴趣锐减.不过,我有免费的学习视频下载,请点击这里. hado ...
- 简单的抓取淘宝关键字信息、图片的Python爬虫|Python3中级玩家:淘宝天猫商品搜索爬虫自动化工具(第一篇)
Python3中级玩家:淘宝天猫商品搜索爬虫自动化工具(第一篇) 淘宝改字段,Bugfix,查看https://github.com/hunterhug/taobaoscrapy.git 由于Gith ...
- PHP 性能分析第一篇: Xhprof & Xhgui 介绍
[前言]这是国外知名博主 Davey Shafik所撰写的 PHP 应用性能分析系列的第一篇,阅读第二篇可深入了解 xhgui,第三篇则关注于性能调优实践. 什么是性能分析? 性能分析是衡量应用程序在 ...
- 学习KnockOut第一篇之Hello World
学习KnockOut第一篇之Hello World 笔者刚开始学习KnockOut.写的内容就相当于一个学习笔记.且在此处向官网致敬,比较喜欢他们家的Live Example版块,里面有jsFiddl ...
随机推荐
- node.js 模块化
模块是编写稍大一点点的程序 一般就会将代码模块化 在node.js中每一个文件就是一个模块,而文件路径就是模块名 怎么使用模块? 在编写某个模块是都有三个预先定义(require,exports,mo ...
- Python3 多线程编程(thread、threading模块)
threading是对thread的封装. 1.开启线程: t=threading.Thread(target=sayhi,args=('hh',)) t.start() 或者先建一个Thread的继 ...
- struts2.0简单教程
Struts2.0简单配置教程: 在Eclipse中配置Struts2 步骤一:首先打开java ee并建立一个动态网站项目,我建立的项目名为TestDemo,如下图: 建立之后可在左侧发现工程,展开 ...
- 【MySQL】MySQL零碎积累
MySQL零碎积累 ■ 在给MySQL添加新用户时可以这么操作: create user 'newUser' identified by 'password'; grant all privilege ...
- 初始配置JDK
什么是java? java是一门编程语言 编程语言有很多种 你比如 C语言 等等 为什么学习java呢! 因为你要和计算机交互 当然了你用汉语跟她说她听不懂 所以你要学习编程语言 那么额咱们的ja ...
- LeetCode-101.对称二叉树
链接:https://leetcode-cn.com/problems/symmetric-tree/description/ 给定一个二叉树,检查它是否是它自己的镜像(即,围绕它的中心对称). 例如 ...
- 转载---SuperMap GIS 9D SP1学习视频播单
转自:http://blog.csdn.net/supermapsupport/article/details/79219102 SuperMap GIS 9D SP1学习视频播单 我们一直在思考什么 ...
- Beta冲刺NO.6
Beta冲刺 第六天 1. 昨天的困难 1.对于设计模式的应用不熟悉,所以在应用上出现了很大的困难. 2.SSH中数据库的管理是用HQL语句实现的,所以在多表查询时出现了很大的问题. 3.页面结构太凌 ...
- c++第0次作业
1.你认为大学的学习生活.同学关系.师生应该是怎样? 随着大学生活的慢慢到来,我开始领悟到大学并不是自由的天堂,相反,我们更加的走进社会这个牢笼.在这个牢笼中有着从前的我们并不需要在意和考虑的规则与问 ...
- python实现线性回归
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处 ...