[Luogu3345][ZJOI2015]幻想乡战略游戏
Luogu
题意:
动态维护带权重心。
sol
这是一道写起来很舒服的动态点分治。(不像某些毒瘤题)
我们考虑,如果你选择的补给点不是当前的带权重心,那么带权重心就在补给点的一个子树中(你把补给点当做根的话)。那么,你把补给点向带权重心所在的子树中移动的时候,答案一定会减小。换言之,如果补给点无论向哪个方向移动答案都不会减小,那么这个点就是带权重心。
所以我们每次考虑移动补给点然后计算即可。
但是怎么移动呢?
最优复杂度的移动策略是:先假设点分树的根就是补给,然后你一次检查与它在原树中相连的所有点,如果有一个比它小(这样的点至多有一个),这时候你不是直接跳向这个点,而是跳向点分树中的那个儿子。这样在保证了解的范围的同时也保证了复杂度,因为点分树的树高是\(\log n\),所以最多向下跳\(\log n\)
次。
主题思想解决了,现在我们考虑怎么快速计算出以某一个点为补给点时的答案。
我们记一下三个变量(不要吐槽变量名):
\(sum_i\):表示点分树中以i为根的子树的权值和
\(gather_i\):表示点分树中以i为根的子树全部集合到i的总耗费
\(tofa_i\)表示点分树中以i为根的子树全部集合到i在点分树中的父节点的总耗费
可以发现其实\(gather_u=\sum tofa_v\),其中v是u在点分树中的儿子。之所以这样记是为了去除重复计算。
具体怎么算请自行YY。(YY有益身心健康)
总的算起来复杂度是\(O(n\log^3n)\)(但显然不满的),如果你写\(RMQLCA\)的话就是\(O(n\log^2n)\)
code
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 100005;
#define ll long long
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int n,m,dis[N],sum[N];
ll gather[N],tofa[N];
struct edge{int to,next,w;}a[N<<1];
int head[N],cnt,pa[N],dep[N],sz[N],son[N],top[N];
void dfs1(int u,int f)
{
pa[u]=f;dep[u]=dep[f]+1;sz[u]=1;
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (v==f) continue;
dis[v]=dis[u]+a[e].w;dfs1(v,u);
sz[u]+=sz[v];if (sz[v]>sz[son[u]]) son[u]=v;
}
}
void dfs2(int u,int up)
{
top[u]=up;
if (son[u]) dfs2(son[u],up);
for (int e=head[u];e;e=a[e].next)
if (a[e].to!=pa[u]&&a[e].to!=son[u])
dfs2(a[e].to,a[e].to);
}
int lca(int u,int v)
{
while (top[u]^top[v])
{
if (dep[top[u]]<dep[top[v]]) swap(u,v);
u=pa[top[u]];
}
return dep[u]<dep[v]?u:v;
}
int getdis(int u,int v){return dis[u]+dis[v]-2*dis[lca(u,v)];}
struct node{int to,next,rt;}G[N];
int vis[N],w[N],fa[N],root,tot,RT,ft[N];
void getroot(int u,int f)
{
sz[u]=1;w[u]=0;
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (v==f||vis[v]) continue;
getroot(v,u);
sz[u]+=sz[v];w[u]=max(w[u],sz[v]);
}
w[u]=max(w[u],tot-sz[u]);
if (w[u]<w[root]) root=u;
}
void solve(int u,int f)
{
fa[u]=f;vis[u]=1;int pre_tot=tot;
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (vis[v]) continue;
if (sz[v]>sz[u]) tot=pre_tot-sz[u];
else tot=sz[v];
root=0;
getroot(v,0);
G[++cnt]=(node){v,ft[u],root};ft[u]=cnt;
solve(root,u);
}
}
void Modify(int u,int val)
{
sum[u]+=val;
for (int i=u;fa[i];i=fa[i])
{
int dist=getdis(u,fa[i]);
sum[fa[i]]+=val;
gather[fa[i]]+=(ll)val*dist;
tofa[i]+=(ll)val*dist;
}
}
ll calc(int u)
{
ll res=gather[u];
for (int i=u;fa[i];i=fa[i])
{
int dist=getdis(u,fa[i]);
res+=(ll)(sum[fa[i]]-sum[i])*dist;
res+=gather[fa[i]]-tofa[i];
}
return res;
}
ll Query(int u)
{
ll temp=calc(u);
for (int e=ft[u];e;e=G[e].next)
if (calc(G[e].to)<temp) return Query(G[e].rt);
return temp;
}
int main()
{
n=gi();m=gi();
for (int i=1;i<n;i++)
{
int u=gi(),v=gi(),w=gi();
a[++cnt]=(edge){v,head[u],w};head[u]=cnt;
a[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
dfs1(1,0);dfs2(1,1);
w[0]=tot=n;cnt=0;
getroot(1,0);
RT=root;
solve(root,0);
while (m--)
{
int u=gi(),e=gi();
Modify(u,e);
printf("%lld\n",Query(RT));
}
return 0;
}
[Luogu3345][ZJOI2015]幻想乡战略游戏的更多相关文章
- 洛谷 P3345 [ZJOI2015]幻想乡战略游戏 解题报告
P3345 [ZJOI2015]幻想乡战略游戏 题目描述 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做 ...
- [ZJOI2015]幻想乡战略游戏——动态点分治
[ZJOI2015]幻想乡战略游戏 带修改下,边点都带权的重心 随着变动的过程中,一些子树内的点经过会经过一些公共边.考虑能不能对这样的子树一起统计. 把树上贡献分块. 考虑点分治算法 不妨先把题目简 ...
- BZOJ3924 ZJOI2015 幻想乡战略游戏 【动态点分治】
BZOJ3924 ZJOI2015 幻想乡战略游戏 Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂 ...
- AC日记——[ZJOI2015]幻想乡战略游戏 洛谷 P3345
[ZJOI2015]幻想乡战略游戏 思路: 树剖暴力转移: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 1 ...
- 【BZOJ3924】[Zjoi2015]幻想乡战略游戏 动态树分治
[BZOJ3924][Zjoi2015]幻想乡战略游戏 Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网 ...
- bzoj3924 [Zjoi2015]幻想乡战略游戏 点分树,动态点分
[BZOJ3924][Zjoi2015]幻想乡战略游戏 Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网 ...
- BZOJ3924 [Zjoi2015]幻想乡战略游戏
Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做越大,以至于幽香一眼根本看不过来, ...
- [ZJOI2015]幻想乡战略游戏
Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做越大,以至于幽香一眼根本看不过来, ...
- bzoj 3924: [Zjoi2015]幻想乡战略游戏
Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做越大,以至于幽香一眼根本看不过来, ...
随机推荐
- [Python Study Notes]with的使用
在 Python 2.5 中, with 关键字被加入.它将常用的 try ... except ... finally ... 模式很方便的被复用.看一个最经典的例子: with open('fil ...
- vue框架-学习记录
前段时间在做vue项目时,遇到挺多问题,想简单总结一下: 1.关于父组件,子组件的通信 网上有很多这方面的讲解,讲解也比较细致,我主要总结了自己在项目中需要的: [1]父组件-子组件 也就是" ...
- CENTOS6.6下redis3.2集群搭建
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn [参考:]http://blog.csdn.net/zhu_tian ...
- wampserve部署
全名 WampServer 来自法国的软件 http://www.wampserver.com/en/ 一.下载方法: 1.一级导航点击download(发现只不过是本页的跳转,硕大的 wampser ...
- python并发编程之线程(一):线程&守护线程&全局解释器锁
一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 官网链接:https://docs.pyth ...
- Java导出freemarker的三种方法
在上一篇呢,我将导出word文档的想法与思路以及实现功能的代码分享了一下,在这里, 我想说的是我对导出freemarker模板路径的三种方法的理解和认知. 有错误的话希望大家帮忙指正 在接下来我会使 ...
- 注册表命令 regedit32
转自 https://zhidao.baidu.com/question/1958216489744783460.html Regedt32.exe 不支持注册表项文件 (.reg) 的导入和导出. ...
- EmguCV中图像类型进行转换
1. Bitmap:类型不在 Emgucv命名空间中 2. Image<TColor, TDepth> 3. Mat: 4. UMat: 高 ...
- CodeForces-747E
这几天好懒,昨天写的题,今天才来写博客.... 这题你不知道它究竟有多少层,但是知道字符串长度不超过10^6,那么它的总容量是被限定的,用一个二维动态数组就OK了.输入字符串后,可以把它按照逗号分割成 ...
- python2.x和python3.x的区别
一.python2.x和python3.x中raw_input( )和input( )区别 1.在Python2.x中raw_input( )和input( ),两个函数都存在,其中区别为 raw_i ...