【BZOJ2152】聪聪可可(点分治)

题面

Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:

由爸爸在纸上画 n 个“点”,并用 n−1 条“边”把这 n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。

聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数 n。

后面n-1行,每行3个整数 x、y、w,表示 x 号点和 y 号点之间有一条边,上面的数是 w。

Output

以即约分数形式输出这个概率(即“ a/b ”的形式,其中 a 和 b 必须互质。如果概率为 1,输出“ 1/1 ”)。

Sample Input

5

1 2 1

1 3 2

1 4 1

2 5 3

Sample Output

13/25

Hint

样例说明:

13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

数据规模和约定

对于30%的数据,n≤1000  另有20%的数据,给出的树中每个节点的度不超过2;

对于100%的数据,n≤20000

题解

还是点分治

因为求点对的距离关于3的膜

因此只要统计子树中的距离膜3的点个数即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 30000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAX<<1];
int h[MAX],cnt=1;
int size[MAX],Size,minr,root;
int S[3],tot,num[3];
bool vis[MAX];
int n;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
void Getroot(int u,int ff)
{
size[u]=1;
int ret=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff||vis[v])continue;
Getroot(v,u);
size[u]+=size[v];
ret=max(ret,size[v]);
}
ret=max(ret,Size-size[u]);
if(ret<minr)minr=ret,root=u;
}
void Getdep(int u,int ff,int dd)
{
S[dd%3]++;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff||vis[v])continue;
Getdep(v,u,(dd+e[i].w)%3);
}
}
void Calc(int u,int fl,int pr)
{
memset(S,0,sizeof(S));
Getdep(u,u,0);
if(fl)
{
num[0]+=2*S[1]*S[2]+S[0]*S[0];
num[1]+=2*S[0]*S[1]+S[2]*S[2];
num[2]+=2*S[0]*S[2]+S[1]*S[1];
}
else
{
pr%=3;
num[(0+pr)%3]-=2*S[1]*S[2]+S[0]*S[0];
num[(1+pr)%3]-=2*S[0]*S[1]+S[2]*S[2];
num[(2+pr)%3]-=2*S[0]*S[2]+S[1]*S[1];
} }
void DFS(int u)
{
Calc(u,1,0);
vis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(vis[v])continue;
Calc(v,0,e[i].w*2);
minr=n;Size=size[v];
Getroot(v,u);
DFS(root);
}
}
int gcd(int a,int b)
{
return !a?b:gcd(b%a,a);
}
int main()
{
Size=n=read();
for(int i=1,u,v,w;i<n;++i)
{
u=read(),v=read(),w=read();
Add(u,v,w);Add(v,u,w);
}
minr=n;Getroot(1,1);
DFS(root);
int tt=num[0]+num[1]+num[2];
int dd=gcd(tt,num[0]);
printf("%d/%d\n",num[0]/dd,tt/dd);
return 0;
}

【BZOJ2152】聪聪可可(点分治)的更多相关文章

  1. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  2. BZOJ2152 [国家集训队] 聪聪可可 [点分治]

    题目传送门 聪聪可可 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 5237  Solved: 2750[Submit][Status][Discuss ...

  3. BZOJ2152 聪聪可可 【点分治】

    BZOJ2152 聪聪可可 Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问 ...

  4. BZOJ2152 聪聪可可 (点分治)

    2152: 聪聪可可 题意: 在一棵边带权的树中,问任取两个点,这两个点间的权值和是3的倍数的概率. 思路: 经典的点分治题目. 利用点分治在计算所有路径长度,把路径长度对3取模,用t[0],t[1] ...

  5. BZOJ2152[国家集训队]聪聪可可——点分治

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  6. bzoj2152 / P2634 [国家集训队]聪聪可可(点分治)

    P2634 [国家集训队]聪聪可可 淀粉质点分治板子 边权直接 mod 3 直接点分治统计出所有的符合条件的点对再和总方案数约分 至于约分.....gcd搞搞就好辣 #include<iostr ...

  7. 【bzoj2152】聪聪可可 树的点分治

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  8. [BZOJ2152]聪聪可可 点分治/树形dp

    2152: 聪聪可可 Time Limit: 3 Sec  Memory Limit: 259 MB Submit: 3602  Solved: 1858 [Submit][Status][Discu ...

  9. 【bzoj2152】【聪聪可可】【点分治】

    [问题描写叙述] 聪聪和可但是兄弟俩.他们俩常常为了一些琐事打起来,比如家中仅仅剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(但是他们家仅仅有一台电脑)--遇到这样的问题,普通情况下石头剪刀布就好 ...

随机推荐

  1. typedef void(*Fun)(void);

    typedef void(*Fun)(void); 函数类似于数组,函数名就是它的首地址: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...

  2. linux打印彩色字

    echo显示带颜色,需要使用参数-e格式如下:echo -e "\033[字背景颜色;文字颜色m字符串\033[0m"例如: echo -e "\033[41;37m T ...

  3. 【数据结构】——搜索二叉树的插入,查找和删除(递归&非递归)

    一.搜索二叉树的插入,查找,删除 简单说说搜索二叉树概念: 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右 ...

  4. PHP中一种sign计算方法

    一言不合上代码......... <?php function getsign($data,$key){ $key=MD5("KEY_".$key."_K" ...

  5. bzoj 2209 [Jsoi2011]括号序列 平衡树

    2209: [Jsoi2011]括号序列 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1404  Solved: 699[Submit][Statu ...

  6. mac 上格式化磁盘出现MediaKit报告设备上的空间不足以执行请求的解决办法

    1.问题描述: 我使用是一个2T移动硬盘,分了5个区 2.分析原因:因为mac OSX的日志式格式需要有EFI分区进行引导,而我的移动硬盘是没有EFI分区的,这样的话就会出现问题: 3.解决办法: 1 ...

  7. Hibernate学习(一)创建数据表

    (1)生成数据库表的创建: // 默认读取hibernate.cfg.xml文件 Configuration cfg = new Configuration().configure(); // 生成并 ...

  8. String、StringBuffer、与StringBuilder的区别

    转载自博客园,原文链接:String.StringBuffer.与StringBuilder的区别 相信大家都知道StringBuffer.StringBuilder,但是这两个的用法都差不多,到底有 ...

  9. python批量修改文件内容及文件编码方式的处理

    最近公司在做tfs迁移,后面要用新的ip地址去访问tfs 拉取代码  ,所以原来发布脚本中.bat类型的脚本中的的ip地址需要更换 简单说下我们发布脚本层级目录 :每个服务站点下都会有一个发布脚本 . ...

  10. Spring初始化ApplicationContext为null

    1. ApplicationContextAware初始化 通过它Spring容器会自动把上下文环境对象调用ApplicationContextAware接口中的setApplicationConte ...