转载请注明作者:梦里茶

Single Shot MultiBox Detector

Introduction

一句话概括:SSD就是关于类别的多尺度RPN网络

基本思路:

  • 基础网络后接多层feature map
  • 多层feature map分别对应不同尺度的固定anchor
  • 回归所有anchor对应的class和bounding box

Model

  • 输入:300x300
  • 经过VGG-16(只到conv4_3这一层)
  • 经过几层卷积,得到多层尺寸逐渐减小的feature map
  • 每层feature map分别做3x3卷积,每个feature map cell(又称slide window)对应k个类别和4个bounding box offset,同时对应原图中6(或4)个anchor(又称default box)
  • 38x38, 最后3x3, 1x1三个feature map的每个feature map cell只对应4个anchor,分别为宽高比: 1:1两种,1:2, 2:1两种,因此总共有 38 * 38 * 4 + 19 * 19 * 6 + 10 * 10 * 6 + 5 * 5 * 6 + 3 * 3 * 4 + 1 * 1 * 4 = 8732 个anchor
  • 其他feature map的feature map cell对应6个anchor,分别为宽高比: 1:1两种,1:2, 2:1两种,1:3, 3:1两种
  • 每层的feature map cell对应的anchor计算方法如下
  • 位置:假设当前feature map cell是位于第i行,第j列,则anchor的中心为 ((i+0.5)/|fk|,(j+0.5)/|fk|), fk是第k层feature map的size(比如38)
    • 缩放因子:



      其中smin为0.2,smax为0.9,m为添加的feature map的层数,缩放因子就是为不同feature map选择不同的大小的anchor,要求小的feature map对应的anchor尽量大,因为越小的feature map,其feature map cell的感受野就越大
  • anchor宽高:

    其中,ar∈{1,2,3,1/2,1/3},可以理解为在缩放因子选择好anchor尺寸后,用ar来控制anchor形状,从而得到多尺度的各种anchor,当ar=1时,增加一种 sk=sqrt(sk-1sk+1),于是每个feature map cell通常对应6种anchor。

  • 网络的训练目标就是,回归各个anchor对应的类别和位置

Training

样本

  • 正样本

    选择与bounding box jaccard overlap(两张图的交集/并集)大于0.5的anchor作为正样本

  • 样本比例

    Hard negative mining:由于负样本很多,需要去掉一部分负样本,先整图经过网络,根据每个anchor的最高类置信度进行排序,选择置信度靠前的样本,这样筛选出来的负样本也会更难识别,并且最终正负样本比例大概是1:3

Loss

还是一如既往的location loss + classification loss,并为location loss添加了系数α(然而实际上α=1)进行平衡,并在batch维度进行平均

  • x是xijp的集合xijp={1,0},用于判断第i个anchor是否是第j个bounding box上的p类样本
  • c是cip的集合,cip是第i个anchor预测为第p类的概率
  • l是预测的bounding box集合
  • g是ground true bounding box集合

其中定位loss与faster rcnn相同

这个式子里的k不是很明确,其实想表达不算背景0类的意思,且前景类只为match的类算location loss

分类loss就是很常用的softmax交叉熵了

核心的内容到这里就讲完了,其实跟YOLO和faster rcnn也很像,是一个用anchor box充当固定的proposal的rpn,并且用多尺度的anchor来适应多种尺度和形状的目标对象。

Detail

在训练中还用到了data augmentation(数据增强/扩充),每张图片多是由下列三种方法之一随机采样而来

  • 使用整图
  • crop图片上的一部分,crop出来的min面积为0.1,0.3,0.5,0.7,0.9
  • 完全随机地crop

然后这些图片会被resize到固定的大小,随机水平翻转,加入一些图像上的噪声,详情可以参考另一篇论文:

Some improvements on deep convolutional neural network based image classification

从切除实验中,可以看到data augmentaion是很重要的(从65.6到71.6)

这个表中还提到了atrous,其实是指空洞卷积,是图像分割(deeplab)领域首先提出的一个卷积层改进,主要是能让测试速度更快。具体可以参考 ICLR2015 Deeplab

从这个表中也可以看出多种形状的anchor可以提升准确率

Result

输入尺寸为300x300,batch size为8的SSD300可以做到实时(59FPS)且准确(74.3% mAP)的测试

Summary

SSD算是一个改进性的东西,站在Faster RCNN的肩膀上达到了实时且准确的检测

读论文系列:Object Detection ECCV2016 SSD的更多相关文章

  1. 读论文系列:Deep transfer learning person re-identification

    读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...

  2. 读论文系列:Object Detection CVPR2016 YOLO

    CVPR2016: You Only Look Once:Unified, Real-Time Object Detection 转载请注明作者:梦里茶 YOLO,You Only Look Once ...

  3. 读论文系列:Object Detection SPP-net

    本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivat ...

  4. 读论文系列:Object Detection NIPS2015 Faster RCNN

    转载请注明作者:梦里茶 Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和 ...

  5. 读论文系列:Object Detection ICCV2015 Fast RCNN

    Fast RCNN是对RCNN的性能优化版本,在VGG16上,Fast R-CNN训练速度是RCNN的9倍, 测试速度是RCNN213倍:训练速度是SPP-net的3倍,测试速度是SPP-net的3倍 ...

  6. [论文阅读]Object detection at 200 Frames Per Second

    本文提出了一个有效且快速的目标检测器,该目标检测器得速度可以达到200+fps,在Pascal VOC-2007上的mAP比Tiny-Yolo-v2高出14. 本文从以下三个方面对网络进行改进. 网络 ...

  7. 读论文系列:Nearest Keyword Search in XML Documents中使用的数据结构(CT、ECT)

    Reference: [1]Y. Tao, S. Papadopoulos, C. Sheng, K. Stefanidis. Nearest Keyword Search in XML Docume ...

  8. Object Detection · RCNN论文解读

    转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...

  9. Object Detection︱RCNN、faster-RCNN框架的浅读与延伸内容笔记

    一.RCNN,fast-RCNN.faster-RCNN进化史 本节由CDA深度学习课堂,唐宇迪老师教课,非常感谢唐老师课程中的论文解读,很有帮助. . 1.Selective search 如何寻找 ...

随机推荐

  1. js和jquery设置disabled属性为true使按钮失效

    设置disabled属性为true即为不可用状态. JS: document.getElementByIdx("btn").disabled=true;   Jquery: $(& ...

  2. java web(转)

    装载:http://www.oschina.net/question/12_52027 OSCHINA 软件库有一个分类——Web框架,该分类中包含多种编程语言的将近500个项目. Web框架是开发者 ...

  3. Mininet简介

    在Coursera SDN开放课程中,编程作业要用Mininet来完成.这里对Mininet做一个简单的介绍. 什么是Mininet Mininet是由一些虚拟的终端节点(end-hosts).交换机 ...

  4. 怎么用secureCRT连接Linux

    首先要安装linux,参看:http://www.cnblogs.com/shenjieblog/p/5061282.html 然后要安装secureCRT,参看:http://www.cnblogs ...

  5. Pazera Free Audio Extractor 中文版 - 轻松将视频背景音乐/对话音频提取出来的免费软件

    这个软件是用来提取视频中的音频的,方便快捷.但是有一个问题,就是如果我提取的视频的名字中有不支持的字符(比如泰文)的时候,那么这个就提取不出来.所以如果名字中有不支持的字符的时候就要先改一个名字,然后 ...

  6. Mac下使用终端连接远程使用ssh协议的git服务器

    最近换了台新电脑, MacBook pro,拿到新电脑之后小小心喜了一下(终于解脱windows的束缚拥抱mac啦), 然后就开始苦逼的安装各种开发环境了. 之前在windows上使用tortoise ...

  7. Mycat 注解说明

    我们知道MySQL 数据库有自己的SQL注解(hint),比如 use index.force index.ignore index 等都是会经常用到的,Mycat 作为一个数据库中间件,最重要的是 ...

  8. 笔记:MyBatis XML配置-typeAliases 内建别名表

    别名 映射的类型 _byte byte _long long _short short _int int _integer int _double double _float float _boole ...

  9. Omron 论坛软件下载连接

    全部软件目录 (更新时间:2017年1月5日) 序号 产品类别 软件名称 1 FA自动化设备 RFID系统 V600-CA5DUSB驱动程序 2 FA自动化设备 可编程控制器 CJ2/CP1USB驱动 ...

  10. poj-1008-玛雅历

    Description 上周末,M.A. Ya教授对古老的玛雅有了一个重大发现.从一个古老的节绳(玛雅人用于记事的工具)中,教授发现玛雅人使用了一个一年有365天的叫做Haab的历法.这个Haab历法 ...