Description

题库链接

维护一个序列 \(A\) 。支持以下操作:

  1. \(X~Y\) 将序列中所有的 \(X\) 变成 \(Y\) ;
  2. 询问序列颜色段数。

\(1\leq n,m\leq 100000,0<A_i,X,Y\leq 1000000\)

Solution

这题做法挺多的,我写的是线段树大力合并。

均摊复杂度为 \(O(n\log_2^2 n)\)

Code

//It is made by Awson on 2018.3.12
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 100000, C = 1000000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, m, flag[C+5], x, ans, opt, a, b;
struct Segment_tree {
int root[C+5], ch[N*20+5][2], kl[N*20+5], kr[N*20+5], cnt[N*20+5], key[N*20+5], pos;
queue<int>mem;
void recycle(int o) {ch[o][0] = ch[o][1] = kl[o] = kr[o] = cnt[o] = key[o] = 0; mem.push(o); }
void pushup(int o) {
kl[o] = kl[ch[o][0]], kr[o] = kr[ch[o][1]], cnt[o] = cnt[ch[o][0]]+cnt[ch[o][1]];
key[o] = key[ch[o][0]]+key[ch[o][1]]-(kr[ch[o][0]] == 1 && kl[ch[o][1]] == 1);
}
void insert(int &o, int l, int r, int loc) {
if (!o) {if (!mem.empty()) o = mem.front(), mem.pop(); else o = ++pos; }
if (l == r) {kl[o] = kr[o] = cnt[o] = key[o] = 1; return; }
int mid = (l+r)>>1;
if (loc <= mid) insert(ch[o][0], l, mid, loc);
else insert(ch[o][1], mid+1, r, loc);
pushup(o);
}
int merge(int a, int b) {
if (!a || !b) return a+b;
if (cnt[a] < cnt[b]) Swap(a, b);
ch[a][0] = merge(ch[a][0], ch[b][0]);
ch[a][1] = merge(ch[a][1], ch[b][1]);
pushup(a); recycle(b); return a;
}
}T; void work() {
read(n), read(m);
for (int i = 1; i <= n; i++) {
read(x), ans -= T.key[T.root[x]]; flag[x] = 1;
T.insert(T.root[x], 1, n, i); ans += T.key[T.root[x]];
}
while (m--) {
read(opt);
if (opt == 2) writeln(ans);
else {
read(a), read(b); if (a == b) continue;
ans -= T.key[T.root[a]]+T.key[T.root[b]], flag[a] = 0, flag[b] = 1;
ans += T.key[T.root[b] = T.merge(T.root[a], T.root[b])]; T.root[a] = 0;
}
}
}
int main() {
work(); return 0;
}

[HNOI 2009]梦幻布丁的更多相关文章

  1. 1483:[HNOI]2009 梦幻布丁 - BZOJ

    Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input 第 ...

  2. 数据结构(启发式合并):HNOI 2009 梦幻布丁

    Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input 第 ...

  3. [BZOJ 1483][HNOI 2009]梦幻补丁(有序表启发式合并)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1483 分析: 先将不同的颜色的出现位置从小到大用几条链表串起来,然后统计一下答案 对于 ...

  4. bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1818  Solved: 761[Submit][Status ...

  5. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  6. BZOJ 1483: [HNOI2009]梦幻布丁 [链表启发式合并]

    1483: [HNOI2009]梦幻布丁 题意:一个带颜色序列,一种颜色合并到另一种,询问有多少颜色段 一种颜色开一个链表,每次遍历小的合并到大的里,顺带维护答案 等等,合并方向有规定? 令col[x ...

  7. [HNOI2009] 梦幻布丁

    [HNOI2009] 梦幻布丁 标签: 链表 题解 可以直接用链表启发式合并做. 合并的细节处理稍微有点麻烦. 假如需要变成另一种颜色的那个颜色的个数更多,那么就肯定不能直接合. 维护一个color数 ...

  8. 【BZOJ1483】【HNOI2009】梦幻布丁(启发式合并,平衡树)

    [BZOJ1483][HNOI2009]梦幻布丁 题面 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1 ...

  9. bzoj 1483: [HNOI2009]梦幻布丁 启发式合并vector

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description N个 ...

随机推荐

  1. [COGS 2583]南极科考旅行

    2583. 南极科考旅行 ★★   输入文件:BitonicTour.in   输出文件:BitonicTour.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 小美要 ...

  2. 数据结构——线性表——队列(queue)

    队列也是一种特殊的线性表,它的特点是先入先出(FIFO,即first in first out).它的意思也很直观,想象一下排队买票,先排的人先买(插队是不对的,所以别去想).它也是很常用的数据结构, ...

  3. 2017-2018-1 我爱学Java 第三周 作业

    Team Presentation 团队展示 队员学号 队名 团队项目描述 队员风采 团队首次合照 团队的特色描述 团队初步合作 前两周合作过程中的优缺点 如何改进 团队选题 确立,建立和初步熟悉团队 ...

  4. 201421123042 《Java程序设计》第14周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 答: 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计 ...

  5. 洛谷P2894 [USACO08FEB]酒店Hotel

    P2894 [USACO08FEB]酒店Hotel https://www.luogu.org/problem/show?pid=2894 题目描述 The cows are journeying n ...

  6. JAVA_SE基础——27.匿名对象

    黑马程序员入学blog... 匿名对象:没有引用类型变量指向的对象称作为匿名对象. 匿名对象要注意的事项:1. 我们一般不会给匿名对象赋予属性值,因为永远无法获取到.2. 两个匿名对象永远都不可能是同 ...

  7. JAVA_SE基础——3.Java程序的开发流程

    上一篇,写的是JAVA的环境变量的配置,今天我抽空写篇Java程序的开发流程,下面的教程是我结合书本和毕向东老师的视频写下的心的~ 在没有真正写Java程序前,首先需要了解Java程序的开发过程. S ...

  8. Linux安装svn服务图文详解 ;出现No repository found in 'svn***问题

    Linux安装svn服务 ** 示例都是用的root权限,可选择用 sudo** 1:检查 安装条件为:Linux(centos)上未安装过svn服务,若安装过或安装失败请自行删除,这里不多介绍.检查 ...

  9. 怎么用DreamWare新建立一个静态网站的站点

    可以上面的图可以看出首先需要用F8确定这个文件是勾选的,然后在D盘建立"华为"文件夹,然后在里面建js,css,image文件夹,然后在DW里面点击站点 然后点击管理站点,有一个新 ...

  10. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...