[CEOI 2004]Sweet
Description
有 \(n\) 种糖果。第 \(i\) 种糖果有 \(m_i\) 个。取出一些糖果,至少 \(a\) 个,但不超过 \(b\) 个。求方案数。
\(1\leq n\leq 10 , 0\leq a\leq b\leq 10000000 , 0\leq m_i\leq 1000000\)
Solution
先考虑没有下界和上界的情况。
对于第 \(i\) 种糖果,我们写出形式幂级数 \(\sum\limits_{j=0}^{m_i}x^j\) 。
那么式子 \(\prod\limits_{i=1}^n\sum\limits_{j=0}^{m_i}x^j\) 中系数和就是答案。
由于 \(\sum\limits_{i=0}^nx^i\cdot(1-x)=1-x^{n+1}\) ,故原式可化为 \(\prod\limits_{i=1}^n\frac{1-x^{m_i+1}}{1-x}=\frac{\prod\limits_{i=1}^n1-x^{m_i+1}}{(1-x)^n}\)。
由生成函数的公式,原式可化为 \(\left(\prod\limits_{i=1}^n1-x^{m_i+1}\right)\cdot\left(\sum\limits_{i=0}^{\infty}C_{i+n-1}^{n-1}x^i\right)\) 。
现在设 \(f_i\) 表示最多选 \(i\) 个糖的方案数。 \(f_i\) 就是上述式子中的 \([0,i]\) 次项式的系数和。
由于 \(n\) 比较小,我们可以将前一部分的式子暴力拆解。用 \(2^n\) 的深搜实现。
对于搜出来的某一个次数 \(p\) ,那么对于 \(f_i\) ,后面部分有贡献的只有 \(\sum\limits_{j=0}^{i-p}C_{j+n-1}^{n-1}x^j\) 。由于 \(C_n^n=1,C_n^{n-1}+C_n^n=C_{n+1}^n\) 得后一部分的式子可以直接化简为 \(C_{i+n-p}^{n}\) 。
则原题就是求 \(f_b-f_{a-1}\) 。
Code
//It is made by Awson on 2018.2.16
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int MOD = 2004;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, a, b, m[15], ans, I;
int C(int n, int m) {
if (n < m) return 0;
LL x = 1;
for (int i = 1; i <= m; i++) x *= i;
LL mod = x*MOD, ans = 1;
for (int i = n-m+1; i <= n; i++) ans = ans*i%mod;
return int(ans/x)%MOD;
}
void dfs(int cen, int cnt, int sum) {
if (cen > n) {
if (cnt&1) ans -= C(I+n-sum, n);
else ans += C(I+n-sum, n);
return;
}
dfs(cen+1, cnt, sum);
dfs(cen+1, cnt+1, sum+m[cen]);
}
int f(int x) {
if (x < 0) return 0; I = x;
ans = 0; dfs(1, 0, 0);
return ans%MOD;
}
void work() {
read(n); read(a); read(b);
for (int i = 1; i <= n; i++) read(m[i]), ++m[i];
writeln(((f(b)-f(a-1))%MOD+MOD)%MOD);
}
int main() {
work(); return 0;
}
[CEOI 2004]Sweet的更多相关文章
- [CEOI 2004]锯木厂选址
Description 题库链接 从山顶上到山底下沿着一条直线种植了 \(n\) 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个 ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
- [总结]一些 DP 优化方法
目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...
- 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 34 Description John ...
- [BZOJ3027][Ceoi2004]Sweet 容斥+组合数
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 135 Solved: 66[Submit][Status] ...
- BZOJ3027 - [CEOI2004]Sweet
Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- Sweet Alert
http://www.dglives.com/demo/sweetalert-master/example/ Sweet Alert A beautiful replacement for Javas ...
- C++程序设计之四书五经[转自2004程序员杂志]--下篇
C++程序设计之四书五经(下篇) 作者:荣耀 我在上篇中“盘点”了TCPL和D&E以及入门教程.高效和健壮编程.模板和泛型编程等方面共十几本C++好书.冬去春来,让我们继续C++书籍精彩之旅. ...
随机推荐
- 项目Beta冲刺第二天
1.昨天的困难,今天解决的进度,以及明天要做的事情 昨天的困难:昨天主要是在确认需求方面花了一些时间,后来终于确认了企业自查风险模块的需求问题 今天解决的进度:根据昨天确认下来的需求,我们基本上完成了 ...
- alpha-咸鱼冲刺day1
一,合照 emmmmm.自然是没有的. 二,项目燃尽图 三,项目进展 登陆界面随意写了一下.(明天用来做测试的) 把学姐给我的模板改成了自家的个人主页界面,侧边栏啥的都弄出来了(快撒花花!) 四,问题 ...
- C语言博客作业—指针
一.PTA实验作业 题目1: 求出数组中最大数和次最大数 1. 本题PTA提交列表 2. 设计思路 定义max表示范围数组中的最大数(初值设为a[0]),z表示找到的元素在数组中的位置: 定义指针*b ...
- 敏捷冲刺每日报告--day2
1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285) Git链接:https://github.com/WHUSE2017/C-team ...
- 201621123062《java程序设计》第六周作业总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...
- 百词斩APP分析
一.调研 1.第一次上手 第一次使用,可以使用微信和qq登录感觉挺不错的不然又要注册有点麻烦,在功能上,用户可以针对自身选择不同水平的英语背单词,然后有多钟方式对自己的听力和单词翻译进行提升.在u ...
- 操作 numpy 数组的常用函数
操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, ...
- 2017-2018-1 我爱学Java 第六七周 作业
团队六七周作业 完善版需求规格说明书 制定团队编码规范 数据库设计 后端架构设计 TODOList 参考资料 完善版需求规格说明书 <需求规格说明书>初稿不足之处: 1.开发工具写错 2. ...
- 一个CSS简单入门网站
讲的知识简单明了,很实用: http://zh.learnlayout.com/
- OpenShift实战(一):OpenShift高级安装
1.1 服务器基本信息 本次安装采用一个master.5个node.3个etcd,node节点两块硬盘,60G磁盘用于docker storage,xxx改为自己的域名或主机名. 节点 功能 IP 内 ...