[CEOI 2004]Sweet
Description
有 \(n\) 种糖果。第 \(i\) 种糖果有 \(m_i\) 个。取出一些糖果,至少 \(a\) 个,但不超过 \(b\) 个。求方案数。
\(1\leq n\leq 10 , 0\leq a\leq b\leq 10000000 , 0\leq m_i\leq 1000000\)
Solution
先考虑没有下界和上界的情况。
对于第 \(i\) 种糖果,我们写出形式幂级数 \(\sum\limits_{j=0}^{m_i}x^j\) 。
那么式子 \(\prod\limits_{i=1}^n\sum\limits_{j=0}^{m_i}x^j\) 中系数和就是答案。
由于 \(\sum\limits_{i=0}^nx^i\cdot(1-x)=1-x^{n+1}\) ,故原式可化为 \(\prod\limits_{i=1}^n\frac{1-x^{m_i+1}}{1-x}=\frac{\prod\limits_{i=1}^n1-x^{m_i+1}}{(1-x)^n}\)。
由生成函数的公式,原式可化为 \(\left(\prod\limits_{i=1}^n1-x^{m_i+1}\right)\cdot\left(\sum\limits_{i=0}^{\infty}C_{i+n-1}^{n-1}x^i\right)\) 。
现在设 \(f_i\) 表示最多选 \(i\) 个糖的方案数。 \(f_i\) 就是上述式子中的 \([0,i]\) 次项式的系数和。
由于 \(n\) 比较小,我们可以将前一部分的式子暴力拆解。用 \(2^n\) 的深搜实现。
对于搜出来的某一个次数 \(p\) ,那么对于 \(f_i\) ,后面部分有贡献的只有 \(\sum\limits_{j=0}^{i-p}C_{j+n-1}^{n-1}x^j\) 。由于 \(C_n^n=1,C_n^{n-1}+C_n^n=C_{n+1}^n\) 得后一部分的式子可以直接化简为 \(C_{i+n-p}^{n}\) 。
则原题就是求 \(f_b-f_{a-1}\) 。
Code
//It is made by Awson on 2018.2.16
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int MOD = 2004;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, a, b, m[15], ans, I;
int C(int n, int m) {
if (n < m) return 0;
LL x = 1;
for (int i = 1; i <= m; i++) x *= i;
LL mod = x*MOD, ans = 1;
for (int i = n-m+1; i <= n; i++) ans = ans*i%mod;
return int(ans/x)%MOD;
}
void dfs(int cen, int cnt, int sum) {
if (cen > n) {
if (cnt&1) ans -= C(I+n-sum, n);
else ans += C(I+n-sum, n);
return;
}
dfs(cen+1, cnt, sum);
dfs(cen+1, cnt+1, sum+m[cen]);
}
int f(int x) {
if (x < 0) return 0; I = x;
ans = 0; dfs(1, 0, 0);
return ans%MOD;
}
void work() {
read(n); read(a); read(b);
for (int i = 1; i <= n; i++) read(m[i]), ++m[i];
writeln(((f(b)-f(a-1))%MOD+MOD)%MOD);
}
int main() {
work(); return 0;
}
[CEOI 2004]Sweet的更多相关文章
- [CEOI 2004]锯木厂选址
Description 题库链接 从山顶上到山底下沿着一条直线种植了 \(n\) 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个 ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
- [总结]一些 DP 优化方法
目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...
- 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 34 Description John ...
- [BZOJ3027][Ceoi2004]Sweet 容斥+组合数
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 135 Solved: 66[Submit][Status] ...
- BZOJ3027 - [CEOI2004]Sweet
Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- Sweet Alert
http://www.dglives.com/demo/sweetalert-master/example/ Sweet Alert A beautiful replacement for Javas ...
- C++程序设计之四书五经[转自2004程序员杂志]--下篇
C++程序设计之四书五经(下篇) 作者:荣耀 我在上篇中“盘点”了TCPL和D&E以及入门教程.高效和健壮编程.模板和泛型编程等方面共十几本C++好书.冬去春来,让我们继续C++书籍精彩之旅. ...
随机推荐
- ThreadLocal 原理和使用场景分析
ThreadLocal 不知道大家有没有用过,但至少听说过,今天主要记录一下 ThreadLocal 的原理和使用场景. 使用场景 直接定位到 ThreadLocal 的源码,可以看到源码注释中有很清 ...
- 敏捷冲刺每日报告二(Java-Team)
第二天报告(10.26 周四) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://gi ...
- Bate敏捷冲刺每日报告--day3
1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285) Git链接:https://github.com/WHUSE2017/C-team 2 ...
- Exception in thread "main" expected '<document start>', but found BlockMappingStart in 'reader', line 23, column 2: nimbus.host: "master"
平台:centos-6.3-i386 jdk-7u51 storm 0.9.1 python 2.6.6 hadoop 1.2.1 启动storm的时候,遇到这个问题,百度之后,看到大家的解决方案 ...
- Beta集合
Beta冲刺day1 Beta冲刺day2 Beta冲刺day3 Beta冲刺day4 Beta冲刺day5 Beta冲刺day6 Beta冲刺day7 测试总结 总结合集 Beta预备
- Beta冲刺Day5
项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...
- Hyper-V虚拟机故障导致数据文件丢失的数据恢复全过程
简介: 由于MD3200存储中虚拟机的数据文件丢失,导致整个Hyper-V服务瘫痪,虚拟机无法使用,故障环境为Windows Server 2012服务器,系统中部署了Hyper-V虚拟机环境,虚拟机 ...
- python之路--day15--常用模块之logging模块
常用模块 1 logging模块 日志级别:Noset (不设置) Debug---(调试信息)----也可用10表示 Info--(消息信息)----也可用20表示 Warning---(警告信息) ...
- GIT入门笔记(11)- 多种撤销修改场景和对策--实战练习
1.检查发现目前没有变化$ git statusOn branch masternothing to commit, working tree clean $ cat lsq.txt2222 2.修改 ...
- java实现两个int数交换
普通方法,进阶方法,大神方法 @Test public void test3(){ int m = 5; int n = 12; //要求m和n交换位置 System.out.println(&quo ...