数列两段的最大字段和

POJ2479

Maximum sum

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 41231 Accepted: 12879

Description

Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:

Your task is to calculate d(A).

Input

The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.

Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.

Output

Print exactly one line for each test case. The line should contain the integer d(A).

Sample Input

1

10
1 -1 2 2 3 -3 4 -4 5 -5

Sample Output

13

Hint

In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.

Huge input,scanf is recommended.

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm> using namespace std;
const int maxn = 50000+7; int t,n,arr[maxn],sum;
int a[maxn],b[maxn]; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i = 1; i <= n ; i++ ) {
scanf("%d",&arr[i]);
}
a[1] = arr[1];
for(int i = 2; i <= n; i ++ ) {
if(a[i-1]<0)
a[i]=arr[i];
else
a[i]= a[i-1]+arr[i];
}
for(int i = 2; i <= n; i ++ ) {
a[i] = max(a[i-1],a[i]);
}
/*********************************/
b[n] = arr[n];
for(int i = n-1; i >= 1; i -- ) {
if(b[i+1]<0)
b[i]=arr[i];
else
b[i]= b[i+1]+arr[i];
}
for(int i = n-1; i >= 1; i -- ) {
b[i] = max(b[i+1],b[i]);
}
int ans = -999999999;
for(int i = 2; i <= n; i ++ ) {
ans = max(a[i-1]+b[i],ans);
}
printf("%d\n",ans);
} return 0;
}

最长公共上升子序列

POJ1458

Common Subsequence

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 53882 Accepted: 22384

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm> using namespace std;
const int maxn = 1e3+7; char str[maxn],ttr[maxn];
int dp[maxn][maxn]; int main()
{
while(~scanf("%s %s",str+1,ttr+1))
{
int n = strlen(str+1);
int m = strlen(ttr+1);
memset(dp,0,sizeof(dp));
dp[1][1] = str[1] == ttr[1];
for(int i = 1; i <= n; i ++ ) {
for(int j = 1; j <= m ; j ++ ) {
if(i == 1 && j == 1) {
continue;
}
if(str[i] == ttr[j]) {
dp[i][j] = dp[i-1][j-1]+1;
}
else {
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}

最长上升子序列

POJ2533

Longest Ordered Subsequence

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 53931 Accepted: 24094

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm> using namespace std;
const int maxn = 1005; int n,arr[maxn],dp[maxn]; int main()
{
while(~scanf("%d",&n))
{
for(int i =1 ; i <= n ; i ++ ) {
scanf("%d",&arr[i]);
dp[i] = 1;
}
for(int i = 1 ; i <= n ; i ++ ) {
for(int j = 1; j < i ; j ++ ) {
if(arr[i]>arr[j]) {
dp[i] = max(dp[i],dp[j]+1);
}
}
}
int ans = 0;
for(int i = 1; i <= n; i ++ ) {
ans = max(ans,dp[i]);
}
printf("%d\n",ans);
} return 0;
}
//二分版本
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm> using namespace std;
const int maxn = 1005; int n,arr[maxn],dp[maxn],top,data; int main()
{
while(~scanf("%d",&n))
{
top = 1;
scanf("%d",&dp[0]);
for(int i =1 ; i < n ; i ++ ) {
scanf("%d",&data);
if(data > dp[top-1]) {
dp[top++] = data;
}
else {
dp[lower_bound(dp,dp+top,data)-dp] = data;
}
}
printf("%d\n",top);
} return 0;
}

最长公共上升子序列

HDU1423

Greatest Common Increasing Subsequence

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8181 Accepted Submission(s): 2644

Problem Description

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
#include <bits/stdc++.h>

using namespace std;
const int maxn = 1005; int f[maxn];
int a[maxn],n;
int b[maxn],m; int main()
{
int t;
while(~scanf("%d",&t))
{
while(t--)
{ memset(f,0,sizeof(f));
scanf("%d",&n);
for(int i = 1; i <= n; i ++ )
{
scanf("%d",&a[i]);
}
scanf("%d",&m);
for(int i = 1; i <= m; i ++ )
{
scanf("%d",&b[i]);
} for(int i = 1; i <= n; i ++ )
{
int MAX = 0;
for(int j = 1; j <= m; j ++ )
{
if(a[i] > b[j]) MAX = max(MAX,f[j]);
if(a[i] == b[j]) f[j] = MAX + 1;
}
} int ans = 0;
for(int j = 1; j <= m; j ++ )
{
ans = max(ans,f[j]);
}
printf("%d\n",ans);
if(t){
puts("");
}
}
} return 0;
}

跟着大佬重新入门DP的更多相关文章

  1. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  2. HDU 2571 命运 (入门dp)

    题目链接 题意:二维矩阵,左上角为起点,右下角为终点,如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) ,其中k>1.问最大路径和. 题解:入门dp,注意负 ...

  3. 【跟着大佬学JavaScript】之节流

    前言 js的典型的场景 监听页面的scroll事件 拖拽事件 监听鼠标的 mousemove 事件 ... 这些事件会频繁触发会影响性能,如果使用节流,降低频次,保留了用户体验,又提升了执行速度,节省 ...

  4. 【跟着大佬学JavaScript】之lodash防抖节流合并

    前言 前面已经对防抖和节流有了介绍,这篇主要看lodash是如何将防抖和节流合并成一个函数的. 初衷是深入lodash,学习它内部的好代码并应用,同时也加深节流防抖的理解.这里会先从防抖开始一步步往后 ...

  5. 【跟着大佬学JavaScript】之数组去重(结果对比)

    前言 数组去重在面试和工作中都是比较容易见到的问题. 这篇文章主要是来测试多个方法,对下面这个数组的去重结果进行分析讨论.如果有不对的地方,还请大家指出. const arr = [ 1, 1, &q ...

  6. 【笔记】入门DP

    复习一下近期练习的入门 \(DP\) .巨佬勿喷.\(qwq\) 重新写一遍练手,加深理解. 代码已经处理,虽然很明显,但请勿未理解就贺 \(qwq\) 0X00 P1057 [NOIP2008 普及 ...

  7. UVA 674 (入门DP, 14.07.09)

     Coin Change  Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We ...

  8. 洛谷P3724 大佬 [AH2017/HNOI2017] dp+bfs

    正解:dp+bfs 解题报告: 传送门! 这题看起来很复杂的样子其实真的很复杂 但是仔细看一下题目,会发现其实操作只有两个目的嘛,一个是保证自己不死,一个是让对手减血 而且保证自己不死只有一种操作 而 ...

  9. 入门dp总结

    写这篇博文主要是为了归纳总结一下dp的有关问题(不定期更新,暑假应该会更的快一些) 会大概讲一下思路,不会事无巨细地讲 另一篇是平时做过的一些dp题,这篇博客里面提到的题都有题解放在那边:https: ...

随机推荐

  1. 一大波 Android 刘海屏来袭,全网最全适配技巧!

    一.序 Hi,大家好,我是承香墨影! Apple 一直在引领设计的潮流,自从 iPhone X 发布之后,"刘海屏" 就一直存在争议.不过不管你怎样,Android 也要跻入 &q ...

  2. Linux:crontab组件部署linux定时任务

    crontab简介 crond 是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划任务类似,当安装完成操作系统后,默认会安装此服务 工具,并且会自动启动c ...

  3. Struts(十四):通用标签-form表单

    form标签是struts2标签中一个重要标签: 可以生成html标签,使用起来和html的form标签差不多: Strut2的form标签会生成一个table,进行自动布局: 可以对表单提交的值进行 ...

  4. ipv4与ipv6的区别

    对于计算机网络有一定了解的园园们来说,对这两个概念应该比较熟悉,我也将我知道的一点点小知识分享给大家吧 1.协议使用的广泛程度不同 目前,ipv4得到了广泛的应用,基本上所以的与上网有关的(看电影,玩 ...

  5. CountDownLatch与thread-join()的区别

    今天学习CountDownLatch这个类,作用感觉和join很像,然后就百度了一下,看了他们之间的区别.所以在此记录一下. 首先来看一下join,在当前线程中,如果调用某个thread的join方法 ...

  6. SQL语句 (一)

    1 SQL语句分类: 数据查询语句(DQL): SELECT 数据操纵语言 (DML): INSERT.UPDATE.DELETE 数据定义语言 (DDL): 数据控制语言 (DCL): GRANT. ...

  7. Javascript中的url编码与解码(详解)

    摘要 本文主要针对URI编解码的相关问题做了介绍,对url编码中哪些字符需要编码.为什么需要编码做了详细的说明,并对比分析了Javascript中和编解码相关的几对函数escape / unescap ...

  8. 最新版Charles破解方法(Mac+Windows).md

    Charles 破解 去网站 http://charles.iiilab.com/ 下载相对应的版本 下载破解文件 charles.jar http://charles.iiilab.com/ 替换掉 ...

  9. 从零开始系列之vue全家桶(1)安装前期准备nodejs+cnpm+webpack+vue-cli+vue-router

    写在前面: 什么是全家桶? 包含了vue-router(http://router.vuejs.org),vuex(http://vuex.vuejs.org), vue-resource(https ...

  10. java的继承性

    在java继承中,子类也称为派生类,父类也称为基类或者超类,基本语法 :子类 extends 父类{} 实现一个简单的继承类: class Person{ private String name; p ...