1.       kafka介绍

1.1.       主要功能

根据官网的介绍,ApacheKafka®是一个分布式流媒体平台,它主要有3种功能:

  1:It lets you publish and subscribe to streams of records.发布和订阅消息流,这个功能类似于消息队列,这也是kafka归类为消息队列框架的原因

  2:It lets you store streams of records in a fault-tolerant way.以容错的方式记录消息流,kafka以文件的方式来存储消息流

  3:It lets you process streams of records as they occur.可以再消息发布的时候进行处理

1.2.       使用场景

1:Building real-time streaming data pipelines that reliably get data between systems or applications.在系统或应用程序之间构建可靠的用于传输实时数据的管道,消息队列功能

2:Building real-time streaming applications that transform or react to the streams of data。构建实时的流数据处理程序来变换或处理数据流,数据处理功能

1.3.       详细介绍

Kafka目前主要作为一个分布式的发布订阅式的消息系统使用,下面简单介绍一下kafka的基本机制

  1.3.1 消息传输流程

    Producer即生产者,向Kafka集群发送消息,在发送消息之前,会对消息进行分类,即Topic,上图展示了两个producer发送了分类为topic1的消息,另外一个发送了topic2的消息。

    Topic即主题,通过对消息指定主题可以将消息分类,消费者可以只关注自己需要的Topic中的消息

    Consumer即消费者,消费者通过与kafka集群建立长连接的方式,不断地从集群中拉取消息,然后可以对这些消息进行处理。

    从上图中就可以看出同一个Topic下的消费者和生产者的数量并不是对应的。

  1.3.2 kafka服务器消息存储策略

    谈到kafka的存储,就不得不提到分区,即partitions,创建一个topic时,同时可以指定分区数目,分区数越多,其吞吐量也越大,但是需要的资源也越多,同时也会导致更高的不可用性,kafka在接收到生产者发送的消息之后,会根据均衡策略将消息存储到不同的分区中。

  在每个分区中,消息以顺序存储,最晚接收的的消息会最后被消费。

  1.3.3 与生产者的交互

    生产者在向kafka集群发送消息的时候,可以通过指定分区来发送到指定的分区中

    也可以通过指定均衡策略来将消息发送到不同的分区中

    如果不指定,就会采用默认的随机均衡策略,将消息随机的存储到不同的分区中

  1.3.4  与消费者的交互

    在消费者消费消息时,kafka使用offset来记录当前消费的位置

    在kafka的设计中,可以有多个不同的group来同时消费同一个topic下的消息,如图,我们有两个不同的group同时消费,他们的的消费的记录位置offset各不项目,不互相干扰。

    对于一个group而言,消费者的数量不应该多余分区的数量,因为在一个group中,每个分区至多只能绑定到一个消费者上,即一个消费者可以消费多个分区,一个分区只能给一个消费者消费

    因此,若一个group中的消费者数量大于分区数量的话,多余的消费者将不会收到任何消息。

2.       Kafka安装与使用

2.1.       下载

  你可以在kafka官网 http://kafka.apache.org/downloads下载到最新的kafka安装包,选择下载二进制版本的tgz文件,根据网络状态可能需要fq,这里我们选择的版本是0.11.0.1,目前的最新版

2.2.       安装

  Kafka是使用scala编写的运行与jvm虚拟机上的程序,虽然也可以在windows上使用,但是kafka基本上是运行在linux服务器上,因此我们这里也使用linux来开始今天的实战。

  首先确保你的机器上安装了jdk,kafka需要java运行环境,以前的kafka还需要zookeeper,新版的kafka已经内置了一个zookeeper环境,所以我们可以直接使用

  说是安装,如果只需要进行最简单的尝试的话我们只需要解压到任意目录即可,这里我们将kafka压缩包解压到/home目录

2.3.       配置

  在kafka解压目录下下有一个config的文件夹,里面放置的是我们的配置文件

  consumer.properites 消费者配置,这个配置文件用于配置于2.5节中开启的消费者,此处我们使用默认的即可

  producer.properties 生产者配置,这个配置文件用于配置于2.5节中开启的生产者,此处我们使用默认的即可

  server.properties kafka服务器的配置,此配置文件用来配置kafka服务器,目前仅介绍几个最基础的配置

    1. broker.id 申明当前kafka服务器在集群中的唯一ID,需配置为integer,并且集群中的每一个kafka服务器的id都应是唯一的,我们这里采用默认配置即可
    2. listeners 申明此kafka服务器需要监听的端口号,如果是在本机上跑虚拟机运行可以不用配置本项,默认会使用localhost的地址,如果是在远程服务器上运行则必须配置,例如:

          listeners=PLAINTEXT:// 192.168.180.128:9092。并确保服务器的9092端口能够访问

      3.zookeeper.connect 申明kafka所连接的zookeeper的地址 ,需配置为zookeeper的地址,由于本次使用的是kafka高版本中自带zookeeper,使用默认配置即可

          zookeeper.connect=localhost:2181

2.4.       运行

  1. 启动zookeeper

cd进入kafka解压目录,输入

bin/zookeeper-server-start.sh config/zookeeper.properties

启动zookeeper成功后会看到如下的输出

    2.启动kafka

cd进入kafka解压目录,输入

bin/kafka-server-start.sh config/server.properties

启动kafka成功后会看到如下的输出

2.5.       第一个消息

   2.5.1   创建一个topic

    Kafka通过topic对同一类的数据进行管理,同一类的数据使用同一个topic可以在处理数据时更加的便捷

    在kafka解压目录打开终端,输入

    bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

    创建一个名为test的topic

 在创建topic后可以通过输入

bin/kafka-topics.sh --list --zookeeper localhost:2181

   来查看已经创建的topic

  2.4.2   创建一个消息消费者

   在kafka解压目录打开终端,输入

    bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning

   可以创建一个用于消费topic为test的消费者

消费者创建完成之后,因为还没有发送任何数据,因此这里在执行后没有打印出任何数据

不过别着急,不要关闭这个终端,打开一个新的终端,接下来我们创建第一个消息生产者

  2.4.3         创建一个消息生产者

    在kafka解压目录打开一个新的终端,输入

    bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

    在执行完毕后会进入的编辑器页面

在发送完消息之后,可以回到我们的消息消费者终端中,可以看到,终端中已经打印出了我们刚才发送的消息

3.       使用java程序

    跟上节中一样,我们现在在java程序中尝试使用kafka

    3.1  创建Topic

public static void main(String[] args) {

    //创建topic

    Properties
props = new Properties();

    props.put("bootstrap.servers",
"192.168.180.128:9092");

    AdminClient
adminClient = AdminClient.create(props);

    ArrayList<NewTopic>
topics = new ArrayList<NewTopic>();

    NewTopic
newTopic = new NewTopic("topic-test", 1, (short) 1);

    topics.add(newTopic);

    CreateTopicsResult
result = adminClient.createTopics(topics);

    try {

        result.all().get();

    }
catch (InterruptedException e)
{

        e.printStackTrace();

    }
catch (ExecutionException e) {

        e.printStackTrace();

    }

}

  使用AdminClient API可以来控制对kafka服务器进行配置,我们这里使用NewTopic(String
name, int numPartitions, short   replicationFactor)的构造方法来创建了一个名为“topic-test”,分区数为1,复制因子为1的Topic.

3.2  Producer生产者发送消息

public static void main(String[] args){

    Properties props = new Properties();

   
props.put("bootstrap.servers", "192.168.180.128:9092");

    props.put("acks", "all");

    props.put("retries", 0);

    props.put("batch.size", 16384);

    props.put("linger.ms", 1);

    props.put("buffer.memory",
33554432);

    props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

    props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");



    Producer<String, String> producer = new KafkaProducer<String, String>(props);

    for (int i = 0; i < 100; i++)

        producer.send(new ProducerRecord<String, String>("topic-test", Integer.toString(i), Integer.toString(i)));



    producer.close();



}

使用producer发送完消息可以通过2.5中提到的服务器端消费者监听到消息。也可以使用接下来介绍的java消费者程序来消费消息

3.3 Consumer消费者消费消息

public static void main(String[] args){

    Properties props = new Properties();

    props.put("bootstrap.servers",
"192.168.12.65:9092");

    props.put("group.id", "test");

    props.put("enable.auto.commit",
"true");

    props.put("auto.commit.interval.ms",
"1000");

   
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

    props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");

    final KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);

    consumer.subscribe(Arrays.asList("topic-test"),new ConsumerRebalanceListener() {

        public
void onPartitionsRevoked(Collection<TopicPartition>
collection) {

        }

        public
void onPartitionsAssigned(Collection<TopicPartition>
collection) {

            //将偏移设置到最开始

            consumer.seekToBeginning(collection);

        }

    });

    while (true) {

        ConsumerRecords<String, String> records = consumer.poll(100);

        for (ConsumerRecord<String, String> record : records)

            System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(),
record.value());

    }

}

这里我们使用Consume API 来创建了一个普通的java消费者程序来监听名为“topic-test”的Topic,每当有生产者向kafka服务器发送消息,我们的消费者就能收到发送的消息。

4.       使用spring-kafka

Spring-kafka是正处于孵化阶段的一个spring子项目,能够使用spring的特性来让我们更方便的使用kafka

4.1   基本配置信息

与其他spring的项目一样,总是离不开配置,这里我们使用java配置来配置我们的kafka消费者和生产者。

  1. 引入pom文件

<!--kafka start-->

<dependency>

    <groupId>org.apache.kafka</groupId>

    <artifactId>kafka-clients</artifactId>

    <version>0.11.0.1</version>

</dependency>

<dependency>

    <groupId>org.apache.kafka</groupId>

    <artifactId>kafka-streams</artifactId>

    <version>0.11.0.1</version>

</dependency>

<dependency>

    <groupId>org.springframework.kafka</groupId>

    <artifactId>spring-kafka</artifactId>

    <version>1.3.0.RELEASE</version>

</dependency>

  1. 创建配置类

我们在主目录下新建名为KafkaConfig的类

@Configuration

@EnableKafka

public class KafkaConfig {



}

  1. 配置Topic

在kafkaConfig类中添加配置

//topic config Topic的配置开始

    @Bean

    public
KafkaAdmin admin() {

        Map<String, Object> configs = new HashMap<String, Object>();

        configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.180.128:9092");

        return new KafkaAdmin(configs);

    }



    @Bean

    public
NewTopic topic1() {

        return
new NewTopic("foo", 10,
(short)
2);

    }

//topic的配置结束

  1. 配置生产者Factort及Template

//producer config start

    @Bean

    public
ProducerFactory<Integer,
String> producerFactory() {

        return
new DefaultKafkaProducerFactory<Integer,String>(producerConfigs());

    }

    @Bean

   
public Map<String, Object> producerConfigs() {

        Map<String, Object> props = new HashMap<String,Object>();

        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"192.168.180.128:9092");

        props.put("acks", "all");

        props.put("retries", 0);

        props.put("batch.size", 16384);

        props.put("linger.ms", 1);

        props.put("buffer.memory",
33554432);

        props.put("key.serializer",
"org.apache.kafka.common.serialization.IntegerSerializer");

        props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

        return props;

    }

    @Bean

    public
KafkaTemplate<Integer,
String> kafkaTemplate() {

        return
new KafkaTemplate<Integer,
String>(producerFactory());

    }

//producer config end

5.配置ConsumerFactory

//consumer config start

    @Bean

    public
ConcurrentKafkaListenerContainerFactory<Integer,String> kafkaListenerContainerFactory(){

       
ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<Integer, String>();

        factory.setConsumerFactory(consumerFactory());

        return factory;

    }



    @Bean

    public
ConsumerFactory<Integer,String> consumerFactory(){

        return
new DefaultKafkaConsumerFactory<Integer, String>(consumerConfigs());

    }





    @Bean

    public
Map<String,Object>
consumerConfigs(){

        HashMap<String, Object> props = new HashMap<String, Object>();

        props.put("bootstrap.servers",
"192.168.180.128:9092");

        props.put("group.id", "test");

        props.put("enable.auto.commit",
"true");

        props.put("auto.commit.interval.ms",
"1000");

        props.put("key.deserializer",
"org.apache.kafka.common.serialization.IntegerDeserializer");

        props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");

        return props;

    }

//consumer config end

4.2  创建消息生产者

//使用spring-kafka的template发送一条消息
发送多条消息只需要循环多次即可

public static void main(String[] args) throws ExecutionException, InterruptedException {

    AnnotationConfigApplicationContext
ctx = new AnnotationConfigApplicationContext(KafkaConfig.class);

    KafkaTemplate<Integer, String> kafkaTemplate =
(KafkaTemplate<Integer, String>) ctx.getBean("kafkaTemplate");

        String
data="this is a test message";

        ListenableFuture<SendResult<Integer, String>> send =
kafkaTemplate.send("topic-test", 1,
data);

        send.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

            public
void onFailure(Throwable throwable) {



            }



            public
void onSuccess(SendResult<Integer, String> integerStringSendResult) {



            }

        });

}

4.3   
创建消息消费者

我们首先创建一个一个用于消息监听的类,当名为”topic-test”的topic接收到消息之后,我们的这个listen方法就会调用。

public class SimpleConsumerListener {

    private
final static Logger logger
= LoggerFactory.getLogger(SimpleConsumerListener.class);

    private final CountDownLatch latch1 = new CountDownLatch(1);



    @KafkaListener(id =
"foo", topics = "topic-test")

    public
void listen(byte[] records) {

        //do
something here

        this.latch1.countDown();

    }

}

我们同时也需要将这个类作为一个Bean配置到KafkaConfig中

@Bean

public SimpleConsumerListener simpleConsumerListener(){

    return
new SimpleConsumerListener();

}

默认spring-kafka会为每一个监听方法创建一个线程来向kafka服务器拉取消息

最后

任何问题请联系hei12138@outlook.com

kafka实战的更多相关文章

  1. Kafka实战-Flume到Kafka

    1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来源 Flume到Kafka 数据源加载 预览 下面 ...

  2. 【转】Kafka实战-Flume到Kafka

    Kafka实战-Flume到Kafka Kafka   2015-07-03 08:46:24 发布 您的评价:       0.0   收藏     2收藏 1.概述 前面给大家介绍了整个Kafka ...

  3. DataPipeline |《Apache Kafka实战》作者胡夕:Apache Kafka监控与调优

    胡夕 <Apache Kafka实战>作者,北航计算机硕士毕业,现任某互金公司计算平台总监,曾就职于IBM.搜狗.微博等公司.国内活跃的Kafka代码贡献者. 前言 虽然目前Apache ...

  4. Kafka实战分析(一)- 设计、部署规划及其调优

    1. Kafka概要设计 kafka在设计之初就需要考虑以下4个方面的问题: 吞吐量/延时 消息持久化 负载均衡和故障转移 伸缩性 1.1 吞吐量/延时 对于任何一个消息引擎而言,吞吐量都是至关重要的 ...

  5. 《Apache kafka实战》读书笔记-kafka集群监控工具

    <Apache kafka实战>读书笔记-kafka集群监控工具 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如官网所述,Kafka使用基于yammer metric ...

  6. 《Apache Kafka实战》读书笔记-调优Kafka集群

    <Apache Kafka实战>读书笔记-调优Kafka集群 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.确定调优目标 1>.常见的非功能性要求 一.性能( ...

  7. 《Apache kafka实战》读书笔记-管理Kafka集群安全之ACL篇

    <Apache kafka实战>读书笔记-管理Kafka集群安全之ACL篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 想必大家能看到这篇博客的小伙伴,估计你对kaf ...

  8. 《Apache Kafka 实战》读书笔记-认识Apache Kafka

    <Apache Kafka 实战>读书笔记-认识Apache Kafka 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.kafka概要设计 kafka在设计初衷就是 ...

  9. Kafka实战-数据持久化

    1.概述 经过前面Kafka实战系列的学习,我们通过学习<Kafka实战-入门>了解Kafka的应用场景和基本原理,<Kafka实战-Kafka Cluster>一文给大家分享 ...

  10. Kafka实战-Kafka到Storm

    1.概述 在<Kafka实战-Flume到Kafka>一文中给大家分享了Kafka的数据源生产,今天为大家介绍如何去实时消费Kafka中的数据.这里使用实时计算的模型——Storm.下面是 ...

随机推荐

  1. 数据结构之---二叉树C实现

    学过数据结构的都知道树,那么什么是树? 树(tree)是包含n(n>0)个结点的有穷集,其中: (1)每个元素称为结点(node): (2)有一个特定的结点被称为根结点或树根(root). (3 ...

  2. DB Query Analyzer 5.05 is released, 65 articles concerned have been published

    DB Query Analyzer 5.05 is released, 65 articles concerned have been published DB Query Analyzer is p ...

  3. obj-c编程10:Foundation库中类的使用(2)[字符串,数组]

    Foundation库的内容不可谓不多,就算很精简的说篇幅也受不了啊!笨猫一向反对博客文章一下子拖拖拉拉写一大坨!KISS哦!so将上一篇文章再分一篇来说,于是有了这篇,可能还会有(3)哦... 我发 ...

  4. Qt5中this application has requested the runtime to terminate it in an unusual way 无法运行问题的解决

    在windows平台使用Qt5.8mingw版写出的程序,在Qt中运行正常,而以release的形式编译并且补充完必要的dll文件后,在其他电脑上运行出现了以下问题: 经过查阅许多资料和亲身实验,终于 ...

  5. Demo1

    <!DOCTYPE html> <html lang="zh"> <header> <meta charset="utf-8&q ...

  6. 学习MACD指标

    概念 MACD叫指数平滑异同移动平均线指标. 零轴 MACD柱线 DIFF线 DEA线 使用 一般出现如下情形,股价处于或即将进入上涨趋势中: MACD指标在零轴上方出现金叉,其后DIFF快线一直位于 ...

  7. geth常用指令

    ubuntu下载: https://github.com/ethereum/go-ethereum/wiki/Installation-Instructions-for-Ubuntu sudo apt ...

  8. Microsoft C++ 异常: std::system_error std::thread

    第一次使用std::thread,把之前项目里面的Windows的thread进行了替换,程序退出的然后发生了std::system_error. 经过调试,发现std::thread ,join了两 ...

  9. Amazing iOS Tips

    先开个题,慢慢加内容: 准备参考的资料 https://github.com/Aufree/trip-to-iOS       https://github.com/vsouza/awesome-io ...

  10. ubuntu 14.04 安装svn server (subversionedge )

    ubuntu 14.04 安装subversionedge 请仔细阅读安装包自带的readme文件! 1.先去官网,找安装包: http://subversion.apache.org/ http:/ ...