Pytorch系列:(三)模型构建
nn.Module 函数详解
nn.Module是所有网络模型结构的基类,无论是pytorch自带的模型,还是要自定义模型,都需要继承这个类。这个模块包含了很多子模块,如下所示,_parameters存放的是模型的参数,_buffers也存放的是模型的参数,但是是那些不需要更新的参数。带hook的都是钩子函数,详见钩子函数部分。
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._non_persistent_buffers_set = set()
self._backward_hooks = OrderedDict()
self._is_full_backward_hook = None
self._forward_hooks = OrderedDict()
self._forward_pre_hooks = OrderedDict()
self._state_dict_hooks = OrderedDict()
self._load_state_dict_pre_hooks = OrderedDict()
self._modules = OrderedDict()
此外,每一个模块还内置了一些常用的方法来帮助访问和操作网络。
load_state_dict() #加载模型权重参数
parameters() #读取所有参数
named_parameters() #读取参数名称和参数
buffers() #读取self.named_buffers中的参数
named_buffers() #读取self.named_buffers中的参数名称和参数
children() #读取模型中,所有的子模型
named_children() #读取子模型名称和子模型
requires_grad_() #设置模型是否开启梯度反向传播
Parameter类
Parameter是Tensor子类,所以继承了Tensor类的属性。例如data和grad属性,可以根据data来访问参数数值,用grad来访问参数梯度。
weight_0 = nn.Parameters(torch.randn(10,10))
print(weight_0.data)
print(weight_0.grad)
定义变量的时候,nn.Parameter会被自动加入到参数列表中去
class MyModel(nn.Module):
def __init__(self):
super(MyModel,self).__init__()
self.weight1 = nn.Parameter(torch.randn(10,10))
self.weight2 = torch.randn(10,10)
def forward(self,x):
pass
model = MyModel()
for name,param in model.named_parameters():
print(name)
output: weight1
ParameterList
接定义成Parameter类外,还可以使用ParameterList和ParameterDict分别定义参数的列表和字典。ParameterList接收一个Parameter实例的列表作为输入然后得到一个参数列表,使用的时候可以用索引来访问某个参数,另外也可以使用append和extend在列表后面新增参数。
params = nn.ParameterList(
[nn.Parameter(torch.randn(10,10)) for i in range(5)]
)
params.append(nn.Parameter(torch.randn(3,3)))
ParameterDict
可以像添加字典数据那样添加参数
params = nn.ParameterDict({
'linear1':nn.Parameter(torch.randn(10,5)),
'linear2':nn.Parameter(torch.randn(5,2))
})
模型构建
使用Sequential构建模型
# 写法一
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# 此处还可以传入其他层
)
# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))
print(net)
自定义模型
- 无参数模型
下面是一个展开操作,比如将2维图像展开成一维
class Flatten(nn.Module):
def __init__(self):
super(Flatten,self).__init__()
def forward(self,input):
return input.view(input.size(0),-1)
- 有参数模型
自定义一个Linear层
class MLinear(nn.Module):
def __init__(self,input,output):
super(MyLinear,self).__init__()
self.w = nn.Parameter(torch.randn(input,output))
self.b = nn.Parameter(torch.randn(output))
def foward(self,x):
x = self.w @ x + self.b
return x
- 组合模型
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.l1 = nn.Linear(10,20)
self.l2 = nn.Linear(20,5)
def forward(self,x):
x = self.l1(x)
x = self.l2(x)
return x
ModuleList & ModuleDict
ModuleList 和 ModuleDict都是继承与nn.Module, 与Seuqential不同的是,ModuleList 和 ModuleDict没有自带forward方法,所以只能作为一个模块和其他自定义方法进行组合。下面是使用示例:
class MyModuleList(nn.Module):
def __init__(self):
super(MyModuleList, self).__init__()
self.linears = nn.ModuleList(
[nn.Linear(10, 10) for i in range(3)]
)
def forward(self, x):
for linear in self.linears:
x = linear(x)
return x
class MyModuleDict(nn.Module):
def __init__(self):
super(MyModuleDict, self).__init__()
self.linears = nn.ModuleDict({
"linear1":nn.Linear(10,10),
"linear2":nn.Linear(10,10)
})
def forward(self, x):
x = self.linears["linear1"](x)
x = self.linears["linear2"](x)
return x
Pytorch系列:(三)模型构建的更多相关文章
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- pytorch入门2.1构建回归模型初体验(模型构建)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- pytorch入门2.2构建回归模型初体验(开始训练)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- pytorch入门2.0构建回归模型初体验(数据生成)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家
系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...
- [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...
- 【小白学PyTorch】6 模型的构建访问遍历存储(附代码)
文章转载自微信公众号:机器学习炼丹术.欢迎大家关注,这是我的学习分享公众号,100+原创干货. 文章目录: 目录 1 模型构建函数 1.1 add_module 1.2 ModuleList 1.3 ...
- Web 开发人员和设计师必读文章推荐【系列三十】
<Web 前端开发精华文章推荐>2014年第9期(总第30期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- CSS3之简易的3D模型构建[原创开源]
CSS3之简易的3D模型构建[开源分享] 先上一张图(成果图):这个是使用 3D建模空间[源码之一] 制作出来的模型之一 当然这是一部分模型特写, 之前还制作过枪的3D模型等等. 感兴趣的朋友可以自己 ...
随机推荐
- 微信小程序:删除时提示是否删除
代码如下: wx.showModal({ title: '提示', content: '确定要删除吗?', success: function (sm) { if (sm.confirm) { // ...
- 关于C++中构造函数的常见疑问
基本概念 我们已经知道在定义一个对象时,该对象会根据你传入的参数来调用类中对应的构造函数.同时,在释放这个对象时,会调用类中的析构函数.其中,构造函数有三种,分别是默认构造函数,有参构造函数和拷贝构造 ...
- 免费报表工具 积木报表(JiMuReport)的安装
分享一b/s报表工具(服务),积木报表(JiMuReport),张代浩大佬出品. 官网:http://www.jimureport.com/ 离线版官方下载:https://github.com/zh ...
- dubbo实战之三:使用Zookeeper注册中心
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- FreeBSD 入门 哲学与玄学
『哲学与玄学』 FreeBSD 是一种 UNIX 哲学(如模块化,一切皆文件等,见< UNIX 编程艺术>❩的发展,也是学院派的代表作品.她是一套工具集,她存在目的是为了让人们更好的生活. ...
- 多租缓存实现方案 (Java)
多租缓存实现方案 (Java) 缓存在系统中是不可少的,缓存的实现是一个从无到有的过程,最开始,单应用的,缓存都是应用内部的,Map基本就能满足,实现简单.但是当上了微服务之后,应用是多部署的,应用之 ...
- U盘重装系统:手把手教你怎么使用U盘重装系统、清除登录密码
前言 之前讲过<不懂电脑也能自己重装系统,可视化傻瓜式一键重装系统不求人!!!>,这是针对可以正常开机的情况下直接使用浏览器功能重装系统, 那不能正常开机或者忘记密码的怎么办呢? 不慌,今 ...
- hexo+github 博客绑定域名
关于博客的搭建分为以下几步: 申请域名可以在万维网上申请一个自己的独特域名,本博客的域名即为zhengwei.xyz. 域名解析域名申请成功后继续在万维网上进行操作,进入管理自己的域名界面,在要解析的 ...
- 【体系结构】Oracle进程架构
Client Process的介绍 Client and Server Processes Client Process代表着客户端进程,每一个客户端进程关联着一个Server Process(服务器 ...
- 2021年的UWP(6)——长生命周期Desktop Extension向UWP的反向通知
上一篇我们讨论了UWP和Desktop Extension间的双向通讯,适用于Desktop Extension中存在用户交互的场景.本篇我们讨论最后一种情况,与前者不同的是,Desktop Exte ...