Pytorch系列:(三)模型构建
nn.Module 函数详解
nn.Module是所有网络模型结构的基类,无论是pytorch自带的模型,还是要自定义模型,都需要继承这个类。这个模块包含了很多子模块,如下所示,_parameters存放的是模型的参数,_buffers也存放的是模型的参数,但是是那些不需要更新的参数。带hook的都是钩子函数,详见钩子函数部分。
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._non_persistent_buffers_set = set()
self._backward_hooks = OrderedDict()
self._is_full_backward_hook = None
self._forward_hooks = OrderedDict()
self._forward_pre_hooks = OrderedDict()
self._state_dict_hooks = OrderedDict()
self._load_state_dict_pre_hooks = OrderedDict()
self._modules = OrderedDict()
此外,每一个模块还内置了一些常用的方法来帮助访问和操作网络。
load_state_dict() #加载模型权重参数
parameters() #读取所有参数
named_parameters() #读取参数名称和参数
buffers() #读取self.named_buffers中的参数
named_buffers() #读取self.named_buffers中的参数名称和参数
children() #读取模型中,所有的子模型
named_children() #读取子模型名称和子模型
requires_grad_() #设置模型是否开启梯度反向传播
Parameter类
Parameter是Tensor子类,所以继承了Tensor类的属性。例如data和grad属性,可以根据data来访问参数数值,用grad来访问参数梯度。
weight_0 = nn.Parameters(torch.randn(10,10))
print(weight_0.data)
print(weight_0.grad)
定义变量的时候,nn.Parameter会被自动加入到参数列表中去
class MyModel(nn.Module):
def __init__(self):
super(MyModel,self).__init__()
self.weight1 = nn.Parameter(torch.randn(10,10))
self.weight2 = torch.randn(10,10)
def forward(self,x):
pass
model = MyModel()
for name,param in model.named_parameters():
print(name)
output: weight1
ParameterList
接定义成Parameter类外,还可以使用ParameterList和ParameterDict分别定义参数的列表和字典。ParameterList接收一个Parameter实例的列表作为输入然后得到一个参数列表,使用的时候可以用索引来访问某个参数,另外也可以使用append和extend在列表后面新增参数。
params = nn.ParameterList(
[nn.Parameter(torch.randn(10,10)) for i in range(5)]
)
params.append(nn.Parameter(torch.randn(3,3)))
ParameterDict
可以像添加字典数据那样添加参数
params = nn.ParameterDict({
'linear1':nn.Parameter(torch.randn(10,5)),
'linear2':nn.Parameter(torch.randn(5,2))
})
模型构建
使用Sequential构建模型
# 写法一
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# 此处还可以传入其他层
)
# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))
print(net)
自定义模型
- 无参数模型
下面是一个展开操作,比如将2维图像展开成一维
class Flatten(nn.Module):
def __init__(self):
super(Flatten,self).__init__()
def forward(self,input):
return input.view(input.size(0),-1)
- 有参数模型
自定义一个Linear层
class MLinear(nn.Module):
def __init__(self,input,output):
super(MyLinear,self).__init__()
self.w = nn.Parameter(torch.randn(input,output))
self.b = nn.Parameter(torch.randn(output))
def foward(self,x):
x = self.w @ x + self.b
return x
- 组合模型
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.l1 = nn.Linear(10,20)
self.l2 = nn.Linear(20,5)
def forward(self,x):
x = self.l1(x)
x = self.l2(x)
return x
ModuleList & ModuleDict
ModuleList 和 ModuleDict都是继承与nn.Module, 与Seuqential不同的是,ModuleList 和 ModuleDict没有自带forward方法,所以只能作为一个模块和其他自定义方法进行组合。下面是使用示例:
class MyModuleList(nn.Module):
def __init__(self):
super(MyModuleList, self).__init__()
self.linears = nn.ModuleList(
[nn.Linear(10, 10) for i in range(3)]
)
def forward(self, x):
for linear in self.linears:
x = linear(x)
return x
class MyModuleDict(nn.Module):
def __init__(self):
super(MyModuleDict, self).__init__()
self.linears = nn.ModuleDict({
"linear1":nn.Linear(10,10),
"linear2":nn.Linear(10,10)
})
def forward(self, x):
x = self.linears["linear1"](x)
x = self.linears["linear2"](x)
return x
Pytorch系列:(三)模型构建的更多相关文章
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- pytorch入门2.1构建回归模型初体验(模型构建)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- pytorch入门2.2构建回归模型初体验(开始训练)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- pytorch入门2.0构建回归模型初体验(数据生成)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家
系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...
- [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...
- 【小白学PyTorch】6 模型的构建访问遍历存储(附代码)
文章转载自微信公众号:机器学习炼丹术.欢迎大家关注,这是我的学习分享公众号,100+原创干货. 文章目录: 目录 1 模型构建函数 1.1 add_module 1.2 ModuleList 1.3 ...
- Web 开发人员和设计师必读文章推荐【系列三十】
<Web 前端开发精华文章推荐>2014年第9期(总第30期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- CSS3之简易的3D模型构建[原创开源]
CSS3之简易的3D模型构建[开源分享] 先上一张图(成果图):这个是使用 3D建模空间[源码之一] 制作出来的模型之一 当然这是一部分模型特写, 之前还制作过枪的3D模型等等. 感兴趣的朋友可以自己 ...
随机推荐
- 逆向基础 C++ Primer Plus 第二章 开始学习C++
C++ Primer Plus 第二章 开始学习C++ 知识点梳理 本章从一个简单的C++例子出发,主要介绍了创建C++程序的步骤,以及其所包含的预处理器编译指令.函数头.编译指令.函数体.注释等组成 ...
- linux之docker 安装 mysql
首先进入docker : 命令:systemctl start docker 查詢一下docker的状态: 命令:docker images 现在开始安装mysql了,第一步拉取镜像 命令:doc ...
- MongoDB 在评论中台的实践
本文主要讲述 vivo 评论中台在数据库设计上的技术探索和实践. 一.业务背景 随着公司业务发展和用户规模的增多,很多项目都在打造自己的评论功能,而评论的业务形态基本类似.当时各项目都是各自设计实现, ...
- mysql索引设计的注意事项(大量示例,收藏再看)
mysql索引设计的注意事项(大量示例,收藏再看) 目录 一.索引的重要性 二.执行计划上的重要关注点 (1).全表扫描,检索行数 (2).key,using index(覆盖索引) (3).通过ke ...
- 机器学习系统或者SysML&DL笔记(一)
前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...
- Nginx常用内核参数优化,安装,基本命令
1.内核参数配置,默认的Linux内核参数考虑的是通用的场景,明显不符合用于支持高并发访问web服务的定义,所以需要修改Linux内核参数,使得Nginx可以拥有更高的性能.可以通过修改 /etc/s ...
- vue离开页面销毁滚动事件
methods:{ handleFun(){ /**销毁处理*/ } }, beforeDestroy(){ window.removeEventListener("scroll&qu ...
- webpack4.x 从零开始配置vue 项目(二)基础搭建loader 配置 css、scss
序 上一篇已经把基本架子搭起来了,现在来增加css.scss.自动生成html.css 提取等方面的打包.webpack 默认只能处理js模块,所以其他文件类型需要做下转换,而loader 恰恰是做这 ...
- String 类的内存 解析
关于String类的内存解析 Person类的内存解析
- python文件处理之fileinput
一.介绍 fileinput模块可以对一个或多个文件中的内容进行迭代.遍历等操作,我们常用的open函数是对一个文件进行读写操作. fileinput模块的input()函数比open函数更高效和好用 ...