tf源码中的object_detection_tutorial.ipynb文件
今天看到原来下载的tf源码的目标检测源码中test的代码不知道跑哪儿去了,这里记录一下。。。
Imports
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image # This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from utils import ops as utils_ops if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
# This is needed to display the images.
%matplotlib inline
Object detection imports
Here are the imports from the object detection module.
from utils import label_map_util from utils import visualization_utils as vis_util
Model preparation
Variables
Any model exported using the export_inference_graph.py tool can be loaded here simply by changing PATH_TO_CKPT to point to a new .pb file.
By default we use an "SSD with Mobilenet" model here. See the detection model zoo for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
:
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90
Download Model
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
Loading label map
Label maps map indices to category names, so that when our convolution network predicts 5, we know that this corresponds to airplane. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
Detection
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] # Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)}) # all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
总结:实际测试的时候多使用glob模块(或os)读文件,opencv(+矩形框)展示检测效果。
tf源码中的object_detection_tutorial.ipynb文件的更多相关文章
- Android源码分析(十一)-----Android源码中如何引用aar文件
一:aar文件如何引用 系统Settings中引用bidehelper-1.1.12.aar 文件为例 源码地址:packages/apps/Settings/Android.mk LOCAL_PAT ...
- The Independent JPEG Group's JPEG software Android源码中 JPEG的ReadMe文件
The Independent JPEG Group's JPEG software========================================== README for rele ...
- angular源码分析:injector.js文件分析——angular中的依赖注入式如何实现的(续)
昨天晚上写完angular源码分析:angular中jqLite的实现--你可以丢掉jQuery了,给今天定了一个题angular源码分析:injector.js文件,以及angular的加载流程,但 ...
- Python3.4 获取百度网页源码并保存在本地文件中
最近学习python 版本 3.4 抓取网页源码并且保存在本地文件中 import urllib.request url='http://www.baidu.com' #上面的url一定要写明确,如果 ...
- 从express源码中探析其路由机制
引言 在web开发中,一个简化的处理流程就是:客户端发起请求,然后服务端进行处理,最后返回相关数据.不管对于哪种语言哪种框架,除去细节的处理,简化后的模型都是一样的.客户端要发起请求,首先需要一个标识 ...
- Android 网络框架之Retrofit2使用详解及从源码中解析原理
就目前来说Retrofit2使用的已相当的广泛,那么我们先来了解下两个问题: 1 . 什么是Retrofit? Retrofit是针对于Android/Java的.基于okHttp的.一种轻量级且安全 ...
- Eclipse与Android源码中ProGuard工具的使用
由于工作需要,这两天和同事在研究android下面的ProGuard工具的使用,通过查看android官网对该工具的介绍以及网络上其它相关资料,再加上自己的亲手实践,算是有了一个基本了解.下面将自己的 ...
- 关于android源码中的APP编译时引用隐藏的API出现的问题
今天在编译android源码中的计算器APP时发现,竟然无法使用系统隐藏的API,比如android.os.ServiceManager中的API,引用这个类时提示错误,记忆中在android源码中的 ...
- wemall app商城源码中android按钮的三种响应事件
wemall-mobile是基于WeMall的android app商城,只需要在原商城目录下上传接口文件即可完成服务端的配置,客户端可定制修改.本文分享wemall app商城源码中android按 ...
随机推荐
- linux文件压缩与文件夹压缩(打包)
目录 一:linux文件压缩 1.linux常见的压缩包有哪些? 2.bzip压缩(文件) 二:打包(文件夹压缩) 1.打包命令 2.参数 3.参数解析(实战) 4.注意事项 简介: win中的压缩包 ...
- python14day
昨日回顾 匿名函数:一句话函数 内置函数II 闭包: 内层函数对外层函数非全局变量的引用 一定存在于嵌套函数中 作用:保护数据安全,自由变量不会在内存中消失,而且全局还引用不到 今日内容 装饰器: 装 ...
- Codeforces Round #742 (Div. 2)
A. Domino Disaster 思路 按照题意模拟即可 如果是 对应关系为R --> R L --> L U --> D D --> U AC_CODE inline v ...
- redis清缓存
先查询当前redis的服务是否已经启动 ps -ef|grep redis [root@guanbin-k8s-master ~]# ps -ef|grep redis redis 1557 1 0 ...
- 服务器性能测试利器之sysbench
前言 sysbench是一个开源的.模块化的.跨平台的多线程性能测试工具,可以用来进行CPU.内存.磁盘I/O.线程.数据库的性能测试.sysbench是基于LuaJIT的可编写脚本的多线程基准测试工 ...
- 【转】zabbix监控mysql
纯属搬家收藏,原文链接 https://www.cnblogs.com/shenjianyu/p/6627843.html 注意: 1.关注的重点在agent端部分 2.zabbix_get命令没有, ...
- MySQL 索引、事务与存储引擎
MySQL 索引.事务与存储引擎 1.索引 2.事务 3.存储引擎 1.索引: 索引的概念 : 索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址 ...
- Java中md5摘要算法的几种方法
public class MD5_Test { public static String md5_1(String oldStr) { char hexDigits[] = { '0', '1', ' ...
- 申请Google AdSense联盟(还没有通过)
最近我把我的博客移动到了我自己搭建的一个网站上这里,想申请goole联盟,但是连续申请了今天都没有被通过 不知道什么原因,goole没有有回复就告诉你不通过,这让我摸不到头脑, 我网站用的是hexo搭 ...
- 基于UDP传输协议局域网文件接收软件设计 Java版
网路传输主要的两大协议为TCP/IP协议和UDP协议,本文主要介绍基于UDP传输的一个小软件分享,针对于Java网络初学者是一个很好的练笔,大家可以参考进行相关的联系,但愿能够帮助到大家. 话不多说, ...