考场的SB经验不再分享

case 0:

一道组合计数的水题,具体不再讲可以看以前的相似题

case 1:

很明显的卡特兰计数,我们把长度为n的序列看成01串

关于卡特兰计数的详细的讲解

由此可知我们需要满足从1——n中前缀1的数量不少于前缀0的数量

case 2:

满足可以在坐标轴上移动

设f[i]表示第i步回到原点,我们枚举第j步第一次回到起点

那么f[i]数组里就不会出现重复,这样可以保证正确性

同时要再次用到卡特兰数:

   我们发现定义的特殊j是第一次回到起点,但cal中可以多次回到起点

但我们可以发现只要我们满足在1-j-1满足前缀和>=1即可,这样我们可以

发现现在序列一部分确定设正方向为1

    1 1 .........0 0

这样中间部分就又是一个cal,这样我们直接乘cal(j/2-1)即可

(注意可能j是四个方向,于是乘4)

case 3:

同时在两轴及第一象限

直接用组合数,乘两个方向的cal即可

 1 #include<iostream>
2 #include<cstdio>
3 #include<cstring>
4 #include<string>
5 #include<algorithm>
6 #include<cmath>
7 #include<stack>
8 #include<map>
9 #include<queue>
10 #define ps push_back
11 #define MAXN 1000001
12 #define ll long long
13 using namespace std;
14 ll n;
15 const ll mod=1000000007;
16 ll jie[MAXN],ni[MAXN],ni_c[MAXN];
17 ll C(ll x,ll y)
18 {
19 if(y>x)return 0;
20 return jie[x]*ni_c[y]%mod*ni_c[x-y]%mod;
21 }
22 ll cal(ll x)
23 {
24 return C(x*2,x)*ni[x+1]%mod;
25 }
26 ll f[MAXN];
27 int main()
28 {
29 ll orz;
30 scanf("%lld%lld",&n,&orz);
31 jie[0]=1;jie[1]=1;
32 ni[0]=1;ni[1]=1;
33 ni_c[0]=1;ni_c[1]=1;
34 for(ll i=2;i<=2*n+10;++i)
35 {
36 jie[i]=(jie[i-1]*i)%mod;
37 ni[i]=((mod-mod/i)*ni[mod%i])%mod;
38 ni_c[i]=(ni_c[i-1]*ni[i])%mod;
39 }
40 ll ans=0;
41 if(orz==0)
42 {
43 for(ll i=0;i<=n;i+=2)
44 {
45 ans=(ans+C(n,i)*C(i,i/2)%mod*C(n-i,(n-i)/2))%mod;
46 }
47 printf("%lld\n",ans%mod);
48 }
49 else if(orz==1)
50 {
51 if(n%2==1)
52 printf("0\n");
53 else
54 printf("%lld\n",(C(n,n/2)%mod*ni[n/2+1]%mod+mod)%mod);
55 }
56 else if(orz==3)
57 {
58 for(ll i=0;i<=n;i+=2)
59 {
60 ll th=C(n,i);
61 if((n-i)%2==1)continue;
62 ans=(ans+th*cal(i/2)%mod*cal((n-i)/2))%mod;
63 }
64 printf("%lld\n",ans);
65 }
66 else if(orz==2)
67 {
68 f[0]=1;
69 for(ll i=2;i<=n;i+=2)
70 {
71 for(ll j=0;j<=i;j+=2)
72 {
73 f[i]=(f[i]+4*f[i-j]*cal(j/2-1))%mod;
74 }
75 }
76 printf("%lld\n",f[n]);
77 }
78 }

【模拟7.27】题(liu_runda的神题)(卡特兰数,组合数)的更多相关文章

  1. 「模拟8.13」任(liu_runda的神题,性质分析)

    考场时没有发现性质,用了个前缀和优化暴力,结果写WA了 我们发现其实联通块的个数就是点的个数-边的个数 然后我们需要维护横向上和纵向上的边的前缀和 前缀和的查询形式稍改一下 暴力 1 #include ...

  2. 飞(fly)(数学推导,liu_runda的神题)

    大概看了两三个小时的题解,思考量很大,实现简单........ 20分: 明显看出,每个点的贡献是x*(x-1)/2;即组合数C(x,2),从x个线段中选出2个的方案数,显然每次相交贡献为1,n^2枚 ...

  3. 7.27 NOIP模拟测试9 随 (rand)+单(single)+题(problem)

    T1 随 (rand) dp+矩阵优化+原根 看着题解懵了一晚上加一上午,最后还是看了DeepinC的博客才把暴力码出来,正解看得一知半解,循环矩阵也不太明白,先留坑吧.暴力里用二维矩阵快速幂会tle ...

  4. [agc007f] Shik and Copying String 模拟神题

    Description ​ "全"在十分愉快打工,第0天,给了他一个仅有小写字母构成的长度为N的字符串S0,在之后的第i天里,"全"的工作是将Si−1复制一份到 ...

  5. POJ 2484 A Funny Game(神题!)

    一开始看这道博弈题的时候我就用很常规的思路去分析了,首先先手取1或者2个coin后都会使剩下的coin变成线性排列的长条,然后无论双方如何操作都是把该线条分解为若干个子线条而已,即分解为若干个子游戏而 ...

  6. BUAA 724 晴天小猪的神题(RMQ线段树)

    BUAA 724 晴天小猪的神题 题意:中文题,略 题目链接:http://acm.buaa.edu.cn/problem/724/ 思路:对于询问x,y是否在同一区间,可以转换成有没有存在一个区间它 ...

  7. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  8. 【CF913F】Strongly Connected Tournament 概率神题

    [CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...

  9. 【BZOJ】2017: [Usaco2009 Nov]硬币游戏(dp+神题+博弈论)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2017 这题太神了,我想了一个中午啊 原来是看错题一直没理解题解说的,一直以为题解是错的QAQ “开始 ...

随机推荐

  1. 将项目连接到远程仓库git

    方式一: git clone "git中的项目地址",此时会生成一个新的项目2.该步骤用于生成一个本地仓库 将需要提交的所有文件除了node_module.git以及输出文件dis ...

  2. Windows反调试技术(上)

    写在前面 在逆向工程中为了防止破解者调试软件,通常都会在软件中采用一些反调试技术来防破解.下面就是一些在逆向工程中常见的反调试技巧与示例. BeingDebuged 利用调试器加载程序时调试器会通过C ...

  3. 改善c++程序的150个建议(读后总结)-------27-35

    27. 区分内存分配的方式 c++中内存分为5个不同的区 ①栈区 栈是一种特殊的数据结构,其存取数据特点为(先进后出,后进先出).栈区中主要用于存储一些函数的入口地址,函数调用时的实参值以及局部变量. ...

  4. MySQL连接本地服务器

    1.打开"控制面板" 2.搜索"管理工具",并点击第一个"管理工具" 3.双击"服务" 4.找到"MySQL& ...

  5. 发布声明$\beta$

    一.新功能 \(\beta\)阶段集中开发了3大核心功能:支持模块的嵌套.模型市场.模型推理,这三项基本上都是从零开始.徒手开发的功能,没有轮子可以参照,因此也不具有可以对比的先前版本. 除此之外,开 ...

  6. [bug] PyCharm远程Spark集群:Java gateway process exited before sending its port number

    原因 无法连接到集群上的java 解决 方法一: 在右上角Edit Configurations中,添加一条环境变量JAVA_HOME,值为远程机器上的java安装路径 方法二: 直接在代码里写上JA ...

  7. Linux命令行欢迎界面美化

    默认的SSH命令行登录欢迎界面如下 [c:\~]$ Connecting to 10.x.13.x:22... Connection established. To escape to local s ...

  8. Ansible命令行方式执行

    Ansible ad-hoc 什么是ad-hoc? 临时命令,执行完不会保存,类似于批量执行命令. ansible的选项 -i # 指定主机清单 ansible rsync -m ping -i 1. ...

  9. 11.13 ethtool:查询网卡参数

    ethtool命令用于查询或设置网卡参数. ethtool [devname] [root@linuxprobe ~]# ethtool eth0 Settings for eth0:  Suppor ...

  10. 嵌入式Boa服务器上CGI开发-(转自Bryce.Xiao)

    嵌入式WEB服务器常见的有lighttpd shttpd thttpdboa mathopd minihttpdappwebgoahead=============================== ...