Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 2549 Solved: 1370
[Submit][Status][Discuss]

Description

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

Input

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

Output

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

Sample Input

0 0 0 100

100 0 100 100

2 2 1

Sample Output

136.60

HINT

对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000

1<=P,Q,R<=10

思路

大概算是三分的模板题

在线段AB和线段CD分别选一个点E,F。假设所需的最短时间的路径为:A->E->F->D

然后单独拿出来E->F->D这条路径,将F->D这条路缩成一个点,再将E->F->D这条路径缩成一个点,计算A点到E点的花费时间,再加上E->F->D路径所花费的最短时间即可

可以知道(并不知道),E点到F->D这个距离花费随着E点坐标的变化,是一个凸函数的函数关系,A点到E->F->D也是一个凸函数(证明看这里:戳我戳我

所以我们可以先假设E点已经找到,然后线段CD上三分寻找F点的位置,使得E->F->D的花费最小

然后在线段AB上三分E点的位置,最后将两段的花费加起来就是最小的花费。

代码

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
const double eps=1e-8;
using namespace std;
struct point
{
double x,y;
};
point a,b,c,d;
double P,Q,R;
inline double dis(point a,point b)
{
double dx=a.x-b.x;
double dy=a.y-b.y;
return sqrt(dx*dx+dy*dy);
}
inline double F(point E,point F)
{
return dis(E,F)/R+dis(F,d)/Q;
}
inline double sanfen(point E,point l,point r)
{
point mid,midr;
while(dis(l,r)>eps)
{
mid.x=(l.x+r.x)/2;
mid.y=(l.y+r.y)/2;
midr.x=(mid.x+r.x)/2;
midr.y=(mid.y+r.y)/2;
if(F(E,mid)>F(E,midr))
l.x=mid.x,l.y=mid.y;
else
r.x=midr.x,r.y=midr.y;
}
return F(E,l);
}
inline double solve(point l,point r)
{
point mid,midr;
while(dis(l,r)>eps)
{
mid.x=(l.x+r.x)/2;
mid.y=(l.y+r.y)/2;
midr.x=(mid.x+r.x)/2;
midr.y=(mid.y+r.y)/2;
double ans1=dis(a,mid)/P+sanfen(mid,c,d);
double ans2=dis(a,midr)/P+sanfen(midr,c,d);
if(ans1>ans2)
l.x=mid.x,l.y=mid.y;
else
r.x=midr.x,r.y=midr.y;
}
return dis(a,l)/P+sanfen(l,c,d);
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cin>>a.x>>a.y>>b.x>>b.y;
cin>>c.x>>c.y>>d.x>>d.y;
cin>>P>>Q>>R;
cout<<fixed<<setprecision(2)<<solve(a,b)<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}

BZOJ 1857: [Scoi2010]传送带(三分套三分)的更多相关文章

  1. BZOJ 1857: [Scoi2010]传送带

    二次联通门 : BZOJ 1857: [Scoi2010]传送带 /* BZOJ 1857: [Scoi2010]传送带 三分套三分 可能是吧..dalao们都说明显是一个单峰函数 可是我证不出来.. ...

  2. Bzoj 1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  3. bzoj 1857: [Scoi2010]传送带 三分

    题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 934  Solved: 501[Submit][Stat ...

  4. BZOJ 1857 传送带 (三分套三分)

    在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...

  5. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  6. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  7. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  8. 【BZOJ-1857】传送带 三分套三分

    1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][ ...

  9. [luogu2571][bzoj1857][SCOI2010]传送门【三分套三分】

    题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...

随机推荐

  1. 到底什么是自动化优先思维?与RPA有什么关系?

    基于RPA的自动化优先,正在成为广大组织的主流管理思维 到底什么是自动化优先思维?与RPA有什么关系? 如何用RPA简单快速的打造一个自动化优先的组织? 文/王吉伟 在IT运维项目中,组织经常会遇到先 ...

  2. Spark产生数据倾斜的原因以及解决办法

    Spark数据倾斜 产生原因 首先RDD的逻辑其实时表示一个对象集合.在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集.当spark调度并运行任务的时候,Spark会为每一个分 ...

  3. Java——数组的定义与使用

    数组的定义与使用 1.数组的基本概念 (1)数组的动态初始化: 数组首先先开辟内存空间,而后再使用索引进行内容的设置,这种定义数组的方式称为动态初始化 数组是引用数据类型,存在有内存分配问题.在使用前 ...

  4. 删除button中除label之外的View

    因为button中的UIButtonLabel判断class类型时,会被认为是view,所以想删除view类型的子控件时,会将label也删掉,从而无法显示title,此时,可以给指定的View添加t ...

  5. MySQL 迁移到 Redis 记

    前些日子,一个悠闲又不悠闲的下午,我还在用 Node.js 写着某个移动互联网应用的 API 服务端.那时还是用 MySQL 作为数据库,一切都很好,所有功能正常运行.可是有很多问题让人不安: 频繁的 ...

  6. 使用beanFactory工厂实例化容器的方式实现单例模式

    //配置文件bean.properties(注意书写顺序) accountService=com.itheima.service.impl.AccountServiceImplaccountDao=c ...

  7. Quartz使用AutoFac依赖注入问题小结

    theme: channing-cyan highlight: a11y-dark 背景 最近在做一个需求,就是在Job中捕捉异常,然后通过邮件或者消息的方式推送给指定人员,在需求实现的过程中遇到的一 ...

  8. 1、Redis简介

    一.NOSQL 1.什么是NOSQL? NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL". 指的是非关系型的数据库.NoSQL有时也称作Not On ...

  9. python使用gitlab-api

    目录 一.简介 二.示例 讲解 配置文件方式存储token 其它返回 三.其它操作 一.简介 公司使用gitlab 来托管代码,日常代码merge request以及其他管理是交给测试,鉴于操作需经常 ...

  10. 新一代Java程序员必学的Docker容器化技术基础篇

    Docker概述 **本人博客网站 **IT小神 www.itxiaoshen.com Docker文档官网 Docker是一个用于开发.发布和运行应用程序的开放平台.Docker使您能够将应用程序与 ...