BZOJ 1857: [Scoi2010]传送带(三分套三分)
Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 2549 Solved: 1370
[Submit][Status][Discuss]
Description
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
Input
输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R
Output
输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位
Sample Input
0 0 0 100
100 0 100 100
2 2 1
Sample Output
136.60
HINT
对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
思路
大概算是三分的模板题
在线段AB和线段CD分别选一个点E,F。假设所需的最短时间的路径为:A->E->F->D
然后单独拿出来E->F->D
这条路径,将F->D
这条路缩成一个点,再将E->F->D
这条路径缩成一个点,计算A点到E点的花费时间,再加上E->F->D
路径所花费的最短时间即可
可以知道(并不知道),E点到F->D
这个距离花费随着E点坐标的变化,是一个凸函数的函数关系,A点到E->F->D
也是一个凸函数(证明看这里:戳我戳我)
所以我们可以先假设E点已经找到,然后线段CD上三分寻找F点的位置,使得E->F->D
的花费最小
然后在线段AB上三分E点的位置,最后将两段的花费加起来就是最小的花费。
代码
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
const double eps=1e-8;
using namespace std;
struct point
{
double x,y;
};
point a,b,c,d;
double P,Q,R;
inline double dis(point a,point b)
{
double dx=a.x-b.x;
double dy=a.y-b.y;
return sqrt(dx*dx+dy*dy);
}
inline double F(point E,point F)
{
return dis(E,F)/R+dis(F,d)/Q;
}
inline double sanfen(point E,point l,point r)
{
point mid,midr;
while(dis(l,r)>eps)
{
mid.x=(l.x+r.x)/2;
mid.y=(l.y+r.y)/2;
midr.x=(mid.x+r.x)/2;
midr.y=(mid.y+r.y)/2;
if(F(E,mid)>F(E,midr))
l.x=mid.x,l.y=mid.y;
else
r.x=midr.x,r.y=midr.y;
}
return F(E,l);
}
inline double solve(point l,point r)
{
point mid,midr;
while(dis(l,r)>eps)
{
mid.x=(l.x+r.x)/2;
mid.y=(l.y+r.y)/2;
midr.x=(mid.x+r.x)/2;
midr.y=(mid.y+r.y)/2;
double ans1=dis(a,mid)/P+sanfen(mid,c,d);
double ans2=dis(a,midr)/P+sanfen(midr,c,d);
if(ans1>ans2)
l.x=mid.x,l.y=mid.y;
else
r.x=midr.x,r.y=midr.y;
}
return dis(a,l)/P+sanfen(l,c,d);
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cin>>a.x>>a.y>>b.x>>b.y;
cin>>c.x>>c.y>>d.x>>d.y;
cin>>P>>Q>>R;
cout<<fixed<<setprecision(2)<<solve(a,b)<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
BZOJ 1857: [Scoi2010]传送带(三分套三分)的更多相关文章
- BZOJ 1857: [Scoi2010]传送带
二次联通门 : BZOJ 1857: [Scoi2010]传送带 /* BZOJ 1857: [Scoi2010]传送带 三分套三分 可能是吧..dalao们都说明显是一个单峰函数 可是我证不出来.. ...
- Bzoj 1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- bzoj 1857: [Scoi2010]传送带 三分
题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 934 Solved: 501[Submit][Stat ...
- BZOJ 1857 传送带 (三分套三分)
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...
- 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- 【BZOJ1857】[Scoi2010]传送带 三分套三分
[BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...
- bzoj1857: [Scoi2010]传送带--三分套三分
三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...
- 【BZOJ-1857】传送带 三分套三分
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1077 Solved: 575[Submit][Status][ ...
- [luogu2571][bzoj1857][SCOI2010]传送门【三分套三分】
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...
随机推荐
- 阿里云ECS磁盘性能测试
阿里官方给出的性能指标 顺序读 测试命令 fio -directory=/var/lib/data -direct=1 -iodepth=1 -thread -ioengine=libaio -ran ...
- 详解 Rainbond Ingress 泛解析域名机制
Rainbond 作为一款云原生应用管理平台,天生带有引导南北向网络流量的分布式网关 rbd-gateway.区别于一般的 Ingress 配置中,用户需要自行定义域名的使用体验,Rainbond 的 ...
- Linux 【复习巩固】
目录 一.网络和服务 1.查看ip 2.查看主机名 配置 3.临时服务 1)基本语法(CentOS 6) 2)基本语法(CentOS 7) 3)示例 4.开机自启动服务 1)基本语法(CentOS 6 ...
- 【leetocode】55. Jump Game
You are given an integer array nums. You are initially positioned at the array's first index, and ea ...
- 【leetcode】222. Count Complete Tree Nodes(完全二叉树)
Given the root of a complete binary tree, return the number of the nodes in the tree. According to W ...
- ALitum技巧
创建异型焊盘的方法 SCH与PCB同步修改后元器件乱跑的解决方法 Altium 在PCB重新编号更新到SCH原理图的方法 同步问题 其他技巧: 当前层亮色,其他层灰色切换:SHIFT+S
- OC-代理,字符串
总结 编号 标题 内容 一 protocol protocol 基本概念/语法格式/protocol和继承区别/使用注意/基协议/@required和@optional关键字/类型限制 二 代理设计模 ...
- Linux:变量$#,$@,$0,$1,$2,$*,$$,$?
写一个简单的脚本 vim var 脚本内容如下: #!/bin/sh echo "the number of parameters passed to the script: $#" ...
- shell awk命令字符串拼接
本节内容:awk命令实现字符串的拼接 输入文件的内容: TMALL_INVENTORY_30_GROUP my163149.cm6 3506 5683506 mysql-bin.000013 3273 ...
- MyBatis一对多映射简单查询案例(嵌套Mapper映射文件中的sql语句)
一.案例描述 书本类别表和书本信息表,查询书本类别表中的某一记录,连带查询出所有该类别书本的信息. 二.数据库表格 书本类别表(booktypeid,booktypename) 书本信息表(booki ...