He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[C]. international conference on computer vision, 2015: 1026-1034.

@article{he2015delving,

title={Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification},

author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},

pages={1026--1034},

year={2015}}

本文介绍了一种PReLU的激活函数和Kaiming的参数初始化方法.

主要内容

PReLU

\[f(y_i) =
\left \{ \begin{array}{ll}
y_i, & y_i >0, \\
a_i y_i, & y_i \le 0.
\end{array} \right.
\]

其中\(a_i\)是作为网络的参数进行训练的.

等价于

\[f(y_i)=\max(0, y_i) + a_i \min (0,y_i).
\]

特别的, 可以一层的节点都用同一个\(a\).

Kaiming 初始化

Forward case

\[\mathbf{y}_l=W_l\mathbf{x}_l+\mathbf{b}_l,
\]

在卷积层中时, \(\mathbf{x}_l\)是\(k\times k \times c\)的展开, 故\(\mathrm{x}_l\in \mathbb{R}^{k^2c}\), 而\(\mathbf{y}_l \in \mathbb{R}^{d}\), \(W_l \in \mathbb{R^{d \times k^2c}}\)(每一行都可以视作一个kernel), 并记\(n=k^2c\).

\[\mathbf{x}_l=f(\mathbf{y}_{l-1}),
\]

\[c_l = d_{l-1}.
\]

假设\(w_l\)与\(x_l\)(注意没粗体, 表示\(\mathbf{w}_l, \mathbf{x}_l\)中的某个元素)相互独立, 且\(w_l\)采样自一个均值为0的对称分布之中.

\[Var[y_l] = n_l Var [w_lx_l] = n_lVar[w_l]E[x_l^2],
\]

除非\(E[x_l]=0\), \(Var[y_l] = n_lVar[w_l]Var[x_l]\), 但对于ReLu, 或者 PReLU来说这个性质是不成立的.

如果我们令\(b_{l-1}=0\), 易证

\[E[x_l^2] = \frac{1}{2} Var[y_{l-1}],
\]

其中\(f\)是ReLU, 若\(f\)是PReLU,

\[E[x_l^2] = \frac{1+a^2}{2} Var[y_{l-1}].
\]

下面用ReLU分析, PReLU是类似的.

\[Var[y_l] = \frac{1}{2} n_l ar[w_l]Var[y_{l-1}],
\]

自然我们希望

\[Var[y_i]=Var[y_j] \Rightarrow \frac{1}{2}n_l Var[w_l]=1, \forall l.
\]

Backward case

\[\tag{13}
\Delta \mathbf{x}_l = \hat{W}_l \Delta \mathbf{y}_l,
\]

\(\Delta \mathbf{x}_l\)表示损失函数观念与\(\mathbf{x}_l\)的导数, 这里的\(\mathbf{y}_l\)与之前提到的\(\mathbf{y}_l\)有出入, 这里需要用到卷积的梯度回传, 三言两语讲不清, \(\hat{W}_l\)是\(W_l\)的一个重排.

因为\(\mathbf{x}_l=f(\mathbf{y}_{l-1})\), 所以

\[\Delta y_l = f'(y_l) \Delta x_{l+1}.
\]

假设\(f'(y_l)\)与\(\Delta x_{l+1}\)相互独立, 所以

\[E[\Delta y_l]=E[f'(y_l)] E[\Delta x_{l+1}] = 0,
\]

若\(f\)为ReLU:

\[E[(\Delta y_l)^2] = Var[\Delta y_l] = \frac{1}{2}Var[\Delta x_{l+1}].
\]

若\(f\)为PReLU:

\[E[(\Delta y_l)^2] = Var[\Delta y_l] = \frac{1+a^2}{2}Var[\Delta x_{l+1}].
\]

下面以\(f\)为ReLU为例, PReLU类似

\[Var[\Delta x_l] = \hat{n}_l Var[w_l] Var[\Delta y_l] = \frac{1}{2} \hat{n}_l Var[w_l] Var[\Delta x_{l+1}],
\]

这里\(\hat{n}_l=k^2d\)为\(\mathbf{y}_l\)的长度.

和前向的一样, 我们希望\(Var[\Delta x_l]\)一样, 需要

\[\frac{1}{2}\hat{n}_l Var[w_l]=1, \forall l.
\]

是实际中,我们前向后向可以任选一个(因为误差不会累积).

[Kaiming]Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification的更多相关文章

  1. 微软亚洲实验室一篇超过人类识别率的论文:Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification ImageNet Classification

    在该文章的两大创新点:一个是PReLU,一个是权值初始化的方法.下面我们分别一一来看. PReLU(paramter ReLU) 所谓的PRelu,即在 ReLU激活函数的基础上加入了一个参数,看一个 ...

  2. PReLU——Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

    1. 摘要 在 \(ReLU\) 的基础上作者提出了 \(PReLU\),在几乎没有增加额外参数的前提下既可以提升模型的拟合能力,又能减小过拟合风险. 针对 \(ReLU/PReLU\) 的矫正非线性 ...

  3. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  4. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  5. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  6. C++ Low level performance optimize 2

    C++ Low level performance optimize 2 上一篇 文章讨论了一些底层代码的优化技巧,本文继续讨论一些相关的内容. 首先,上一篇文章讨论cache missing的重要性 ...

  7. C++ Low level performance optimize

    C++ Low level performance optimize 1.  May I have 1 bit ? 下面两段代码,哪一个占用空间更少,那个速度更快?思考10秒再继续往下看:) //v1 ...

  8. [notes] ImageNet Classification with Deep Convolutional Neual Network

    Paper: ImageNet Classification with Deep Convolutional Neual Network Achievements: The model address ...

  9. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

随机推荐

  1. Spark基础:(一)初识Spark

    1.Spark中的Python和Scala的Shell (1): Python的Spark Shell 也就是我们常说的PySpark Shell进入我们的Spark目录中然后输入 bin/pyspa ...

  2. Oracle—全局变量

    Oracle全局变量 一.数据库程序包全局变量       在程序实现过程中,经常用遇到一些全局变量或常数.在程序开发过程中,往往会将该变量或常数存储于临时表或前台程序的全局变量中,由此带来运行效率降 ...

  3. Linux基础命令---ftp

    ftp ftp指令可以用来登录远程ftp服务器. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora.   1.语法       ftp [ ...

  4. linux查询健康状态,如何直观的判断你的Linux系统是否健康

    一提到对于查看系统运行的健康状况,可能大多数朋友考虑到的就是查看进程或者打开任务管理器,但是对于应用在真实生产环境中服务器的linux系统来说,以上两种方式都不是***效的查看方式,那么今天就给大家推 ...

  5. JSP中session、cookie和application的使用

    一.session (单用户使用) 1.用处:注册成功后自动登录,登录后记住用户状态等 使用会话对象session实现,一次会话就是一次浏览器和服务器之间的通话,会话可以在多次请求中保存和使用数据. ...

  6. 使用frp进行内网穿透,实现ssh远程访问Linux服务器

    搭建一个完整的frp服务链需要: VPS一台(也可以是具有公网IP的实体机) 访问目标设备(就是你最终要访问的设备) 简单的Linux基础(如果基于Linux配置的话) 我这里使用了腾讯云服务器作为服 ...

  7. Linux中的正则

    目录 一.匹配规则 二.举例 一.匹配规则 * 匹配 0 或多个字符 ? 匹配任意一个字符 [list] 匹配 list 中的任意单一字符 [^list] 匹配 除list 中的任意单一字符以外的字符 ...

  8. df和du显示不同

    目录 一.简介 二.原因分析 三.解决方法 一.简介 Linux服务器,使用df -h查看文件系统使用率,可以看到/dev/xvdb1磁盘占用了约27G,挂载目录为/opt. 但进入到opt目录中执行 ...

  9. Git远程操作(附重要原理图)

    原文出处: 阮一峰 Git是目前最流行的版本管理系统,学会Git几乎成了开发者的必备技能. Git有很多优势,其中之一就是远程操作非常简便.本文详细介绍5个Git命令,它们的概念和用法,理解了这些内容 ...

  10. CF1461A String Generation 题解

    Content 构造一个仅由 a,b,c 三个字符组成,且最长回文子串长度不超过 \(k\) 的长度为 \(n\) 的字符串. 数据范围:数据组数 \(\leqslant 10\),\(1\leqsl ...