Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition).

单个像素的意义其实很小, 于是有了superpixel的概念, 即一簇pixels的集合(且这堆pixels共用一个值), 这会导致图片有非常有趣的艺术风格(下图便是取不同的superpixel大小形成的效果, 有种抽象画的感觉?):

经过superpixel的预处理后, 图片可以变得更加容易提取edge, region, 毕竟superpixel已经率先提取过一次了.

SLIC Superpixel algorithm

SLIC (simple linear iterative clustering) 算法是基于k-means的一种聚类算法.

Given: 需要superpixels的个数\(n_{sp}\); 图片\(f(x, y) = (r, g, b), x = 1,2,\cdots M, y = 1, 2, \cdots, N\);

  1. 根据图片以及其位置信息生成数据:

    \[\bm{z} = [r, g, b, x, y]^T,
    \]

    其中\(r, g, b\)是颜色编码, \(x, y\)是位置信息.

  2. 令\(n_{tp} = MN\)表示pixels的个数, 并计算网格大小:

    \[s = [n_{tp} / n_{sp}]^{1/2}.
    \]
  3. 将图片均匀分割为大小\(s\)的网格, 初始化superpixels的中心:

    \[\bm{m}_i = [r_i, g_i, b_i, x_i, y_i]^T, i=1,2,\cdots, n_{sp},
    \]

    为网格的中心. 或者, 为了防止噪声的影响, 选择中心\(3 \times 3\)领域内梯度最小的点.

  4. 将图片的每个pixel的类别标记为\(L(p) = -1\), 距离\(d(p) = \infty\);

  5. 重复下列步骤直到收敛:

    1. 对于每个像素点\(p\), 计算其与\(2s \times 2s\)邻域内的中心点\(\bm{m}_i\)之间的距离\(D_i(p)\), 倘若\(D_i(p) < d(p)\):

      \[d(p) = D_i, L(p) = i.
      \]
    2. 令\(C_i\)表示\(L(p) = i\)的像素点的集合, 更新superpixels的中心:

      \[\bm{m}_i = \frac{1}{|C_i|} \sum_{\bm{z} \in C_i} \bm{z}, i=1, 2, \cdots, n_{sp}.
      \]
  6. 将以\(\bm{m}_i\)为中心的区域中的点的(r, g, b)设定为与\(\bm{m}_i\)一致.

距离函数的选择

倘若\(D\)采用的是和普通K-means一样的\(\|\cdot\|_2\)显然是不合适的, 因为\((r, g, b)\)和\((x, y)\)显然不是一个尺度的. 故采用如下的距离函数:

\[D = [(\frac{d_c}{d_{cm}})^2 + (\frac{d_s}{d_{sm}})^2]^{1/2}, \\
d_c = [(r_j - r_i)^2 + (g_j - g_i)^2 + (b_j - b_i)^2]^{1/2}, \\
d_s = [(x_j - x_i)^2 + (y_j - y_i)^2]^{1/2},
\]

其中\(d_{cm}, d_{sm}\)分别是\(d_c, d_s\)可能取到的最大值, 相当于标准化了.

代码

skimage.segmentation.slic

import numpy as np

def _generate_data(img):
img = img.astype(np.float64)
if len(img.shape) == 2:
img = img[..., None]
M, N = img.shape[0], img.shape[1]
loc = np.stack(np.meshgrid(range(M), range(N), indexing='ij'), axis=-1)
classes = -np.ones((M, N))
distances = np.ones((M, N)) * np.float('inf')
data = np.concatenate((img, loc), axis=-1)
return data, classes, distances def _generate_means(data, size: int):
M, N = data.shape[0], data.shape[1]
x_splits = np.arange(0, M + size, size)
y_splits = np.arange(0, N + size, size)
means = []
for i in range(len(x_splits) - 1):
for j in range(len(y_splits) - 1):
r1, r2 = x_splits[i:i+2]
c1, c2 = y_splits[j:j+2]
region = data[r1:r2, c1:c2]
means.append(region.mean(axis=(0, 1)))
return np.array(means) def _unit_step(data, means, classes, distances, size, dis_fn):
M, N = data.shape[0], data.shape[1]
size = 2 * size
for i, m in enumerate(means):
# ..., x, y
x, y = np.round(m[-2:])
x, y = int(x), int(y)
xl, xr = max(0, x - size), min(x + size, M)
yb, yt = max(0, y - size), min(y + size, N)
p = data[xl:xr, yb:yt]
_dis = dis_fn(p, m)
indices = _dis < distances[xl:xr, yb:yt]
distances[xl:xr, yb:yt][indices] = _dis[indices]
classes[xl:xr, yb:yt][indices] = i # update
for i in range(len(means)):
x_indices, y_indices = np.where(classes == i)
if len(x_indices) == 0:
continue
means[i] = data[x_indices, y_indices].mean(axis=0) def slic(img, size, max_iters=10, compactness=10):
data, classes, distances = _generate_data(img)
means = _generate_means(data, size)
dsm = size
dcm = (img.max(axis=(0, 1)) - img.min(axis=(0, 1))) * compactness
dsc = np.concatenate((dcm, [dsm] * 2))
def dis_func(p, m):
_dis = ((p - m) / dsc) ** 2
return _dis.sum(axis=-1)
for _ in range(max_iters):
_unit_step(data, means, classes, distances, size, dis_func)
new_img = np.zeros_like(img, dtype=np.float)
for i, m in enumerate(means):
x_indices, y_indices = np.where(classes == i)
if len(x_indices) == 0:
continue
new_img[x_indices, y_indices] = m[:-2]
return new_img.astype(img.dtype)
from skimage import io, segmentation, filters
from freeplot.base import FreePlot

img = io.imread(r"Lenna.png") ours = slic(img, size=50, compactness=0.5) def mask2img(mask, img):
new_img = img.astype(np.float)
masks = np.unique(mask)
for m in masks:
x, y = np.where(mask == m)
mcolor = new_img[x, y].mean(axis=0)
new_img[x, y] = mcolor
return new_img.astype(img.dtype) mask = segmentation.slic(img)
yours = mask2img(mask, img) fp = FreePlot((1, 3), (10.3, 5), titles=('Lenna', 'ours', 'skimage.segmentation.slic'))
fp.imageplot(img, index=(0, 0))
fp.imageplot(ours, index=(0, 1))
fp.imageplot(yours, index=(0, 2))
fp.set_title()
fp.show()

skimage上实现的代码还有强制连通性, 我想这个是为什么它看起来这么流畅的原因. Compactness 越大, 聚类越倾向于空间信息, 所以越容易出现块状结构.

SuperPixel的更多相关文章

  1. Superpixel Based RGB-D Image Segmentation Using Markov Random Field——阅读笔记

    1.基本信息 题目:使用马尔科夫场实现基于超像素的RGB-D图像分割: 作者所属:Ferdowsi University of Mashhad(Iron) 发表:2015 International ...

  2. {Links}{Matting}{Saliency Detection}{Superpixel}Source links

    自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1 http://blog.csdn.net/ansh ...

  3. SLIC superpixel算法

    标题 SLIC superpixel算法 作者 YangZheng 联系方式 263693992 SLIC算法是simple linear iterative cluster的简称,该算法用来生成超像 ...

  4. 跑superpixel的程序

    知乎上对superpixel的讲解还不错:https://www.zhihu.com/question/27623988 superpixel的算法有很多,opencv中也包含了很多,我找了一个比较经 ...

  5. 【深度聚类】Superpixel Sampling Networks

    Superpixel Sampling Networks 原始文档:https://www.yuque.com/lart/papers/ssn 本文的思想很简单,传统的超像素算法是一种有效的低/中级的 ...

  6. SLIC superpixel实现分析

    http://infoscience.epfl.ch/record/149300这是SLIC算法的官网,网站有和SLIC相关的资源. SLIC主要运用K-means聚类算法进行超像素的处理,聚类算法中 ...

  7. 超像素经典算法SLIC的代码的深度优化和分析。

    现在这个社会发展的太快,到处都充斥着各种各样的资源,各种开源的平台,如github,codeproject,pudn等等,加上一些大型的官方的开源软件,基本上能找到各个类型的代码.很多初创业的老板可能 ...

  8. paper 116:自然图像抠图/视频抠像技术梳理(image matting, video matting)

    1. Bayesian Matting, Chuang, CVPR 2001.http://grail.cs.washington.edu/projects/digital-matting/paper ...

  9. {Reship}{Code}{CV}

    UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/in ...

随机推荐

  1. Idea中JSP页面中out内置对象报错out.println标红问题

    问题如图: 解决方法: 导入jar包 1.在pom.xml的<dependencies>里面复制 <dependency> <groupId>javax.servl ...

  2. mysql数据查询语言DQL

    DB(database)数据库:存储数据的'仓库',保存了一系列有组织的数据 DBMS(Database Management System)数据库管理系统:用于创建或管理DB SQL(Structu ...

  3. Java实现读取文件

    目录 Java实现读取文件 1.按字节读取文件内容 使用场景 2.按字符读取文件内容 使用场景 3.按行读取文件内容 使用场景 4.随机读取文件内容 使用场景 Java实现读取文件 1.按字节读取文件 ...

  4. git提交指定文件

    1. 用git add 命令添加第一个commit需要的文件 git add file1 git add file2 2. 隐藏其他修改,git stash 的参数中 -k 开关告诉仓库保持文件的完整 ...

  5. c学习 - 第七章:数组

    7.3.6 字符串处理函数 (1).puts(字符数组) 字符串输出到终端 (2).gets(字符数组) 从标准输入获取字符串(包括空格) (3).strcat(字符数组1,字符数组2) 连接两个字符 ...

  6. Linux学习 - 文件特殊权限

    一.SUID权限(只针对文件) 只有可执行的二进制程序才能设定SUID权限 命令执行者要对该程序拥有x(执行)权限 1 拥有SUID的文件 /usr/bin/passwd 2 功能: 命令执行者(其他 ...

  7. 快速上手git gitlab协同合作

    简单记录,整理. 摘要 为方便大家快速上手Git,并使用Gitlab协同合作,特编写此手册,手册内容不会太丰富与深入.主要包含如下内容: Git 使用教程1.1 安装1.2 常用命令1.3 版本控制1 ...

  8. ssm-book 整合案例

    一:环境及要求 环境: IDEA最新版 MySQL 5.7.19  Tomcat 9  Maven 3.6     要求: 需要掌握 MyBatis:Spring:SpringMVC:MySQL数据库 ...

  9. SpringBoot切换Tomcat容器

    SpringBoot默认的容器为Tomcat, 依赖包在spring-boot-starter-web下 Xml代码 <dependencies> <dependency> & ...

  10. 【Java基础】JAVA中优先队列详解

    总体介绍 优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素).这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序( ...