vue3 最长递增子序列 diff优化
//vue3优化版(回头我会完善下算法思路)
function getSequence(arr) {
const p = arr.slice()
const result = [0]
let i, j, u, v, c
const len = arr.length
for (i = 0; i < len; i++) {
const arrI = arr[i]
if (arrI !== 0) {
j = result[result.length - 1]
if (arr[j] < arrI) {
p[i] = j
result.push(i)
continue
}
u = 0
v = result.length - 1
while (u < v) {
c = ((u + v) / 2) | 0
if (arr[result[c]] < arrI) {
u = c + 1
} else {
v = c
}
}
if (arrI < arr[result[u]]) {
if (u > 0) {
p[i] = result[u - 1]
}
result[u] = i
}
}
}
u = result.length
v = result[u - 1]
while (u-- > 0) {
result[u] = v
v = p[v]
}
return result
}
console.log(getSequence([10, 9, 2, 5, 3, 7, 101, 18]));
//算法原型——基础算法版
//Objective is to find the longest increasing subsequence in an array.
let nums = [10,9,2,5,3,7,101,18]
//O(n^2) solution that uses dynamic programming to figure out if we want the
//element in the subsequence or not.
if (nums.length == 0) {
return 0
}
//Every element initially starts with a subsequence of length 1
let dp = new Array(nums.length).fill(1)
//Use a nested iterator to compare all pairs of elements in the array
for (let i = 0; i < nums.length; i++) {
for (let j = 0; j < i; j++) {
//If nums[i] = 5 && nums[j] = 2, then we can choose to add
//the previous subsequence to the current one
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1)
}
}
}
return Math.max(...dp)
vue3 最长递增子序列 diff优化的更多相关文章
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列LIS再谈
DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- Luogu 3402 最长公共子序列(二分,最长递增子序列)
Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...
- 51NOD 1376 最长递增子序列的数量 [CDQ分治]
1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i< ...
- 动态规划----最长递增子序列问题(LIS)
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...
- Python动态规划求解最长递增子序列(LIS)
原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列
随机推荐
- WPF之AvalonEdit实现MVVM双向绑定
AvalonEdit简介 AvalonEdit是基于WPF开发的代码显示控件,默认支持多种不同语言的关键词高亮,并且可以自定义高亮配置.所以通过AvalonEdit可以快速开发出自己想要的代码编辑器. ...
- [CodeLife]记毕业后第一份工作
记毕业后第一份工作与公司 写在前面--前言 已然临近21年五月,很快又是一年毕业季了,公司里来了应届的新人,忽然才意识到自己已经不是公司年龄最小的了((笑~).依稀还记得两年前,自己也是如他们那般青涩 ...
- 基于Spring MVC + Spring + MyBatis的【银行卡系统】
资源下载:https://download.csdn.net/download/weixin_44893902/45604256 练习点设计: 删除.新增 一.语言和环境 实现语言:JAVA语言. 环 ...
- Android开发 ListView(垂直滚动列表项视图)的简单使用
效果图: 使用方法: 1.在布局文件中加入ListView控件: <?xml version="1.0" encoding="utf-8"?> &l ...
- docker安装minio
目录 一.简介 二.docker安装 三.java中使用minio上传与下载 一.简介 MinIO 是在 GNU Affero 通用公共许可证 v3.0 下发布的高性能对象存储. 它是与 Amazon ...
- etcd的raft选取机制
etcd 是一个分布式的k/V存储系统.核心使用了RAFT分布式一致性协议.一致性这个概念,它是指多个服务器在状态达成一致,但是在一个分布式系统中,因为各种意外可能,有的服务器可能会崩溃或变得不可靠, ...
- Java中Jar包调用命令行运行编译
原文链接:https://www.toutiao.com/i6491877373942694413/ 记事本编写两个简单的类 文件结构目录 启动DOS,进入文件所在目录 进入到class所在文件的目录 ...
- POJ 2387 Til the Cows Come Home (最短路径 模版题 三种解法)
原题链接:Til the Cows Come Home 题目大意:有 个点,给出从 点到 点的距离并且 和 是互相可以抵达的,问从 到 的最短距离. 题目分析:这是一道典型的最短路径模版 ...
- Android官方文档翻译 七 2.Adding the Action Bar
Adding the Action Bar 增加一个Action Bar(工具栏) The action bar is one of the most important design element ...
- Redhat 如何使用yum 源(转)
1.需要把Redhat注册的信息给解决掉 This system is not registered with an entitlement server. You can use subscript ...