机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型?
这篇博文会向大家解释准确率并不是衡量模型好坏的唯一指标,同时我也会对其他衡量指标做出一些简单说明。
首先我们先要了解混淆矩阵(Confusion Matrix), 如下图,混淆矩阵经常被用来衡量一个分类模型在测试样本上的性能,本文提到的所有衡量标准都会用到下面混淆矩阵中出现的的四个值

真正例和真反例表示被正确预测的数据,假正例和假反例表示被错误预测的数据,接下来的内容基本都是围绕着四个值展开,因此我们有必要在这里弄清楚这四个值的含义是什么.
TP(True Positive) -被正确预测的正例.表示真实值为正,同时也被正确的预测为正;
TN(True Negative) -被正确预测的反例.表示真实值为反例,也被正确的预测为反例;
FP(False Positive) -表示真实值为负例,被错误的预测为正例;
FN(False Negative)-表示真实值为正例,被错误的预测为反例;
在了解了这四个值之后让我们来计算接下来的Accuracy, Precision, Recall, F1 Score
Accuracy
Accuracy是最直观的衡量模型好坏的指标,它实际上是被正确预测的数据量比上所有参与预测的数据量的值。 正如我开篇提到的,有人会认为如果我们的模型具有很高的Accuracy,那么我们的模型是最好的。
首先要明确只有当我们拥有一个对称数据集时,也就是假阳性和假阴性的值几乎相同时,Accuracy才可以被用来作为一个很好的衡量标准。 因此,我们必须查看其他参数才能完整地评估模型的性能。

Precision and Recall
有人翻译他们为精确率和召回率,我更喜欢用查准率和查全率来翻译这两个词.
- 查准率P就表示在预测结果为正例的样本里,真实情况也为正例所占的比率

适用场景:当反例被错误的预测为正例(假正例)产生的代价很高的时候,适合用查准率,因为高查准率意味着低假正率/假阳性.比如在垃圾邮件检测中,假正例意味着非垃圾邮件(实际为负)被错误的预测为垃圾邮件(预测为正).如果一个垃圾邮件监测系统的查准率不高导致很多非垃圾邮件被归到垃圾邮箱里去,那么邮箱用户可能会丢失或者漏看一些很重要的邮件.
- 查全率R表示在真实情况为正例的所有样本中,预测结果也为正例的样本所占的比率

使用场景:当正例被错误的预测为反例(假反例)产生很高的代价时,用查全率,因为高查全率意味着低假反率/假阴性.比如说在银行的欺诈检测或医院的病患者检测中,如果将欺诈性交易(实际为正)预测为非欺诈性交易(预测为负),则可能会给银行带来非常严重的损失。再比如以最近的新冠疫情为例,如果一个患病者(实际为正)经过试剂检测被预测为没有患病(预测为负),这样的假反例或者说假阴性产生的风险就非常大.
F1 Score
F1是查准率和查全率的一个加权平均,根据wikipedia给出的解释,F1 Score表达式如下

F1把假反例和假正例都考虑在内,它不像Accuracy这么容易理解,但是F1比Accuracy更适用,尤其是当你的数据集类别分布不均衡时.比如说你的样本中正样本:负样本 = 100:1.
当假正例和假反例造成的代价差不多的时候直接用Accuracy就可以,但是当假正例和假反例产生的代价差别很大的时候,则可以考率更好的度量比如Precision,Recall和F1 Score.
reference : Accuracy, Precision, Recall & F1 Score: Interpretation of Performance Measures
Accuracy, Precision, Recall or F1?
机器学习--如何理解Accuracy, Precision, Recall, F1 score的更多相关文章
- 机器学习基础梳理—(accuracy,precision,recall浅谈)
一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签 ...
- Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...
- 机器学习:评价分类结果(F1 Score)
一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. ...
- BERT模型在多类别文本分类时的precision, recall, f1值的计算
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...
- 目标检测的评价标准mAP, Precision, Recall, Accuracy
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...
- Classification week6: precision & recall 笔记
华盛顿大学 machine learning :classification 笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...
- 机器学习中的 precision、recall、accuracy、F1 Score
1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...
- 【tf.keras】实现 F1 score、precision、recall 等 metric
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义, ...
- 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy 真实结果 1 ...
随机推荐
- Mysql之用户认证授权管理
概述 Mysql的认证采用账号密码方式,其中账号由两个部分组成:Host和User:Host为允许登录的客户端Ip,User为当前登录的用户名. 授权没有采用典型的RBAC(基于角色的访问控制),而是 ...
- HTTP 1.x 学习笔记 —— Web 性能权威指南
HTTP 1.0的优化策略非常简单,就一句话:升级到HTTP 1.1.完了! 改进HTTP的性能是HTTP 1.1工作组的一个重要目标,后来这个版本也引入了大量增强性能的重要特性,其中一些大家比较熟知 ...
- TypeError: Object of type 'datetime' is not JSON serializable
我的描述:我在flask框架中引用orm查数据库并返回数据,出现此类问题,如下图: 解决方案: 1.从表面意思看,就是说datetime时间类型无法被序列化.于是我百度了网上的同事的解答,大多说是时间 ...
- react性能提升
1.把.bind(this)提升到constructor里面 2.在生命周期函数里面shouldComponentupdate里面做父组件改变重新渲染以致于子组件重新渲染的禁止 3.在setstate ...
- react新手入坑
1.vscode保存react项目的时候由于js-css-html插件格式化代码导致react代码缩进错误 解决方法:禁用js-css-html插件 2.react和vue不同,react方法的定义需 ...
- Python2和Python3编码的区别
Python2 python2中有两种储存变量的形式,第一种:Unicode:第二种:按照coding头来的. 假设python2用utf8存储x='中文',当你print(x)的时候,终端接收gbk ...
- 微信小程序切换标签改变样式
微信小程序切换标签改变样式 wxml <!--顶部导航栏--> <view class="swiper-tab"> <view class=" ...
- mysql 单表下的字段操作_查询
查询的规律 查询语句限定条件越多,查询范围越小: 1.整个表 Select * From 库名.表名 2.整个表的某字段内 Select id From 库名.表名 3.整个表某字段的范围内 Sele ...
- 详解JavaScript中的原型
前言 原型.原型链应该是被大多数前端er说烂的词,但是应该还有很多人不能完整的解释这两个内容,当然也包括我自己. 最早一篇原型链文章写于2019年07月,那个时候也是费了老大劲才理解到了七八成,到现在 ...
- ES系列(一):编译准备与server启动过程解析
ES作为强大的和流行的搜索引擎服务组件,为我们提供了方便的和高性能的搜索服务.在实际应用中也是用得比较爽,但如果能够更深入一点.虽然网上有许多的文章已经完整说明,ES是如何如何做到高性能,如何做到高可 ...